This paper presents a bi-level hybrid local search(BHLS)algorithm for the three-dimensional loading problem with balancing constraints(3DLP-B),where several rectangular boxes with even densities but different sizes ar...This paper presents a bi-level hybrid local search(BHLS)algorithm for the three-dimensional loading problem with balancing constraints(3DLP-B),where several rectangular boxes with even densities but different sizes are loaded into a single cubic bin to meet the requirements of the space or capacity utilization and the balance of the center of gravity.The proposed algorithm hybridizes a novel framed-layout procedure in which the concept of the core block and its generation strategy are introduced.Once the block-loading sequence has been determined,we can load one block at a time by the designed construction heuristic.Then,the double-search is introduced;its external search procedure generates a list of compact packing patterns while its internal search procedure is used to search the core-block frames and their best distribution locations.The approach is extensively tested on weakly to strongly heterogeneous benchmark data.The results show that it has better performance in improving space utilization rate and balanced condition of the placement than existed techniques:the overall averages from 79.85%to 86.45%were obtained for the balanced cases and relatively high space-usage rate of 89.44%was achieved for the unbalanced ones.展开更多
In this paper, a new hybrid algorithm based on exploration power of a new improvement self-adaptive strategy for controlling parameters in DE (differential evolution) algorithm and exploitation capability of Nelder-...In this paper, a new hybrid algorithm based on exploration power of a new improvement self-adaptive strategy for controlling parameters in DE (differential evolution) algorithm and exploitation capability of Nelder-Mead simplex method is presented (HISADE-NMS). The DE has been used in many practical cases and has demonstrated good convergence properties. It has only a few control parameters as number of particles (NP), scaling factor (F) and crossover control (CR), which are kept fixed throughout the entire evolutionary process. However, these control parameters are very sensitive to the setting of the control parameters based on their experiments. The value of control parameters depends on the characteristics of each objective function, therefore, we have to tune their value in each problem that mean it will take too long time to perform. In the new manner, we present a new version of the DE algorithm for obtaining self-adaptive control parameter settings. Some modifications are imposed on DE to improve its capability and efficiency while being hybridized with Nelder-Mead simplex method. To valid the robustness of new hybrid algorithm, we apply it to solve some examples of structural optimization constraints.展开更多
In this paper,by designing a normalized nonmonotone search strategy with the BarzilaiBorwein-type step-size,a novel local minimax method(LMM),which is a globally convergent iterative method,is proposed and analyzed to...In this paper,by designing a normalized nonmonotone search strategy with the BarzilaiBorwein-type step-size,a novel local minimax method(LMM),which is a globally convergent iterative method,is proposed and analyzed to find multiple(unstable)saddle points of nonconvex functionals in Hilbert spaces.Compared to traditional LMMs with monotone search strategies,this approach,which does not require strict decrease of the objective functional value at each iterative step,is observed to converge faster with less computations.Firstly,based on a normalized iterative scheme coupled with a local peak selection that pulls the iterative point back onto the solution submanifold,by generalizing the Zhang-Hager(ZH)search strategy in the optimization theory to the LMM framework,a kind of normalized ZH-type nonmonotone step-size search strategy is introduced,and then a novel nonmonotone LMM is constructed.Its feasibility and global convergence results are rigorously carried out under the relaxation of the monotonicity for the functional at the iterative sequences.Secondly,in order to speed up the convergence of the nonmonotone LMM,a globally convergent Barzilai-Borwein-type LMM(GBBLMM)is presented by explicitly constructing the Barzilai-Borwein-type step-size as a trial step-size of the normalized ZH-type nonmonotone step-size search strategy in each iteration.Finally,the GBBLMM algorithm is implemented to find multiple unstable solutions of two classes of semilinear elliptic boundary value problems with variational structures:one is the semilinear elliptic equations with the homogeneous Dirichlet boundary condition and another is the linear elliptic equations with semilinear Neumann boundary conditions.Extensive numerical results indicate that our approach is very effective and speeds up the LMMs significantly.展开更多
针对矿难发生后井下环境的不确定性,提出一种以矿难前的GIS(Geographic information system)地图为基础建立环境栅格模型并结合改进遗传算法的矿难搜索机器人全局路径规划方法。效仿蚁群算法中的信息素提出基于位置信息负反馈的方法,并...针对矿难发生后井下环境的不确定性,提出一种以矿难前的GIS(Geographic information system)地图为基础建立环境栅格模型并结合改进遗传算法的矿难搜索机器人全局路径规划方法。效仿蚁群算法中的信息素提出基于位置信息负反馈的方法,并结合优先权分组的思想,提出一种新的有效的种群初始化方法,同时将该种群初始化方法应用到变异算子中,且依据最优解的变化情况自适应地调整交叉和变异的概率。与此同时,针对环境信息的不同变化情况,结合全局路径规划结果对机器人进行局部避障方法的研究。最后,通过仿真实验证明本方法能够快速有效地在已知环境中得到机器人的最优路径,并且能够在局部变化的环境中实现实时避障。展开更多
基金Project(16B134)supported by Hunan Provincial Department of Education,China
文摘This paper presents a bi-level hybrid local search(BHLS)algorithm for the three-dimensional loading problem with balancing constraints(3DLP-B),where several rectangular boxes with even densities but different sizes are loaded into a single cubic bin to meet the requirements of the space or capacity utilization and the balance of the center of gravity.The proposed algorithm hybridizes a novel framed-layout procedure in which the concept of the core block and its generation strategy are introduced.Once the block-loading sequence has been determined,we can load one block at a time by the designed construction heuristic.Then,the double-search is introduced;its external search procedure generates a list of compact packing patterns while its internal search procedure is used to search the core-block frames and their best distribution locations.The approach is extensively tested on weakly to strongly heterogeneous benchmark data.The results show that it has better performance in improving space utilization rate and balanced condition of the placement than existed techniques:the overall averages from 79.85%to 86.45%were obtained for the balanced cases and relatively high space-usage rate of 89.44%was achieved for the unbalanced ones.
文摘In this paper, a new hybrid algorithm based on exploration power of a new improvement self-adaptive strategy for controlling parameters in DE (differential evolution) algorithm and exploitation capability of Nelder-Mead simplex method is presented (HISADE-NMS). The DE has been used in many practical cases and has demonstrated good convergence properties. It has only a few control parameters as number of particles (NP), scaling factor (F) and crossover control (CR), which are kept fixed throughout the entire evolutionary process. However, these control parameters are very sensitive to the setting of the control parameters based on their experiments. The value of control parameters depends on the characteristics of each objective function, therefore, we have to tune their value in each problem that mean it will take too long time to perform. In the new manner, we present a new version of the DE algorithm for obtaining self-adaptive control parameter settings. Some modifications are imposed on DE to improve its capability and efficiency while being hybridized with Nelder-Mead simplex method. To valid the robustness of new hybrid algorithm, we apply it to solve some examples of structural optimization constraints.
基金supported by the NSFC(Grant Nos.12171148,11771138)the NSFC(Grant Nos.12101252,11971007)+2 种基金the NSFC(Grant No.11901185)the National Key R&D Program of China(Grant No.2021YFA1001300)by the Fundamental Research Funds for the Central Universities(Grant No.531118010207).
文摘In this paper,by designing a normalized nonmonotone search strategy with the BarzilaiBorwein-type step-size,a novel local minimax method(LMM),which is a globally convergent iterative method,is proposed and analyzed to find multiple(unstable)saddle points of nonconvex functionals in Hilbert spaces.Compared to traditional LMMs with monotone search strategies,this approach,which does not require strict decrease of the objective functional value at each iterative step,is observed to converge faster with less computations.Firstly,based on a normalized iterative scheme coupled with a local peak selection that pulls the iterative point back onto the solution submanifold,by generalizing the Zhang-Hager(ZH)search strategy in the optimization theory to the LMM framework,a kind of normalized ZH-type nonmonotone step-size search strategy is introduced,and then a novel nonmonotone LMM is constructed.Its feasibility and global convergence results are rigorously carried out under the relaxation of the monotonicity for the functional at the iterative sequences.Secondly,in order to speed up the convergence of the nonmonotone LMM,a globally convergent Barzilai-Borwein-type LMM(GBBLMM)is presented by explicitly constructing the Barzilai-Borwein-type step-size as a trial step-size of the normalized ZH-type nonmonotone step-size search strategy in each iteration.Finally,the GBBLMM algorithm is implemented to find multiple unstable solutions of two classes of semilinear elliptic boundary value problems with variational structures:one is the semilinear elliptic equations with the homogeneous Dirichlet boundary condition and another is the linear elliptic equations with semilinear Neumann boundary conditions.Extensive numerical results indicate that our approach is very effective and speeds up the LMMs significantly.
文摘针对矿难发生后井下环境的不确定性,提出一种以矿难前的GIS(Geographic information system)地图为基础建立环境栅格模型并结合改进遗传算法的矿难搜索机器人全局路径规划方法。效仿蚁群算法中的信息素提出基于位置信息负反馈的方法,并结合优先权分组的思想,提出一种新的有效的种群初始化方法,同时将该种群初始化方法应用到变异算子中,且依据最优解的变化情况自适应地调整交叉和变异的概率。与此同时,针对环境信息的不同变化情况,结合全局路径规划结果对机器人进行局部避障方法的研究。最后,通过仿真实验证明本方法能够快速有效地在已知环境中得到机器人的最优路径,并且能够在局部变化的环境中实现实时避障。