In this study,new particle and energy balance equations have been developed to predict the electron temperature and density in locally bounded plasmas.Classical particle and energy balance equations assume that all pl...In this study,new particle and energy balance equations have been developed to predict the electron temperature and density in locally bounded plasmas.Classical particle and energy balance equations assume that all plasma within a reactor is completely confined only by the reactor walls.However,in industrial plasma reactors for semiconductor manufacturing,the plasma is partially confined by internal reactor structures.We predict the effect of the open boundary area(A′_(L,eff))and ion escape velocity(u_(i))on electron temperature and density by developing new particle and energy balance equations.Theoretically,we found a low ion escape velocity(u_(i)/u_(B)≈0.2)and high open boundary area(A′_(L,eff)/A_(T,eff)≈0.6)to result in an approximately 38%increase in electron density and an 8%decrease in electron temperature compared to values in a fully bounded reactor.Additionally,we suggest that the velocity of ions passing through the open boundary should exceedω_(pi)λ_(De)under the condition E^(2)_(0)?(Φ/λ_(De))^(2).展开更多
Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do ...Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do not involve any special data structure,and do not induce savings in memory requirements,they are easily implemented on existing codes and are recommended for 1D and 2D simulations when intensive testing is required.The multilevel technique can also be applied to balance laws,but in this case,numerical errors may be induced by the technique.We present a series of numerical tests that point out that the use of monotonicity-preserving interpolatory techniques eliminates the numerical errors observed when using the usual 4-point centered Lagrange interpolation,and leads to a more robust multilevel code for balance laws,while maintaining the efficiency rates observed forhyperbolic conservation laws.展开更多
Evapotranspiration is an important parameter used to characterize the water cycle of ecosystems.To under-stand the properties of the evapotranspiration and energy balance of a subalpine forest in the southeastern Qing...Evapotranspiration is an important parameter used to characterize the water cycle of ecosystems.To under-stand the properties of the evapotranspiration and energy balance of a subalpine forest in the southeastern Qinghai-Tibet Plateau,an open-path eddy covariance system was set up to monitor the forest from November 2020 to October 2021 in a core area of the Three Parallel Rivers in the Qing-hai-Tibet Plateau.The results show that the evapotranspira-tion peaked daily,the maximum occurring between 11:00 and 15:00.Environmental factors had significant effects on evapotranspiration,among them,net radiation the greatest(R^(2)=0.487),and relative humidity the least(R^(2)=0.001).The energy flux varied considerably in different seasons and sensible heat flux accounted for the main part of turbulent energy.The energy balance ratio in the dormant season was less than that in the growing season,and there is an energy imbalance at the site on an annual time scale.展开更多
Mobile Edge Computing(MEC)-based computation offloading is a promising application paradigm for serving large numbers of users with various delay and energy requirements.In this paper,we propose a flexible MECbased re...Mobile Edge Computing(MEC)-based computation offloading is a promising application paradigm for serving large numbers of users with various delay and energy requirements.In this paper,we propose a flexible MECbased requirement-adaptive partial offloading model to accommodate each user's specific preference regarding delay and energy consumption.To address the dimensional differences between time and energy,we introduce two normalized parameters and then derive the computational overhead of processing tasks.Different from existing works,this paper considers practical variations in the user request patterns,and exploits a flexible partial offloading mode to minimize computation overheads subject to tolerable delay,task workload and power constraints.Since the resulting problem is non-convex,we decouple it into two convex subproblems and present an iterative algorithm to obtain a feasible offloading solution.Numerical experiments show that our proposed scheme achieves a significant improvement in computation overheads compared with existing schemes.展开更多
The longitudinal wave term within Faraday’s law of electromagnetic induction (Faraday’s law) underwent recovery to ensure its suitability for theoretical derivation of the equation governing longitudinal electromagn...The longitudinal wave term within Faraday’s law of electromagnetic induction (Faraday’s law) underwent recovery to ensure its suitability for theoretical derivation of the equation governing longitudinal electromagnetic (LEM) waves. The revised Maxwell’s equations include the crucial parameters being the attenuation time constants of magnetic vortex potential and electric vortex potential generated by external electromagnetic field within the propagation medium. Specific expressions for them are obtained through theoretical analysis. Subsequently, a model for propagating magnetic P-wave generated by the superposition of a left-handed photo and a right-handed photon in a vacuum is formulated based on reevaluated total current law and revised Faraday’s law, covering wave equations, energy equation, as well as propagation mode involving mutual induction and conversion between scalar magnetic field and vortex electric field. Furthermore, through theoretical derivations centered around magnetic P-wave, evidence was presented regarding its ability to absorb huge free energy through the entangled interaction between zero-point vacuum energy field and the torsion field produced by the vortex electric field.展开更多
This paper addresses the issue of the formulation of weak solutions to systems of nonlinear hyperbolic conservation laws as integral balance laws.The basic idea is that the“meaningful objects”are the fluxes,evaluate...This paper addresses the issue of the formulation of weak solutions to systems of nonlinear hyperbolic conservation laws as integral balance laws.The basic idea is that the“meaningful objects”are the fluxes,evaluated across domain boundaries over time intervals.The fundamental result in this treatment is the regularity of the flux trace in the multi-dimensional setting.It implies that a weak solution indeed satisfies the balance law.In fact,it is shown that the flux is Lipschitz continuous with respect to suitable perturbations of the boundary.It should be emphasized that the weak solutions considered here need not be entropy solutions.Furthermore,the assumption imposed on the flux f(u)is quite minimal-just that it is locally bounded.展开更多
[Objective] The study aimed to apply energy balance snowmelt model for estimating the snowmelt runoff generated by seasonal snow in Tianshan Mountains. [Method] Three snow water collecting sites were set on a sunny sl...[Objective] The study aimed to apply energy balance snowmelt model for estimating the snowmelt runoff generated by seasonal snow in Tianshan Mountains. [Method] Three snow water collecting sites were set on a sunny slope in western Tianshan Mountains to measure the snowmelt rates at hourly interval. The positive sensible heat and negative latent heat fluxes were calculated by the energy balance snowmelt model; the snowmelt rate was also estimated by the model. Finally, the ac- curacy for the model was investigated in detail. [Result] The results indicated that sensible heat fluxes and latent heat fluxes accounted for 13.4% of total energy input and 15.1% of energy output, respectively. A good agreement between observed and estimated SWE was proved by low volume difference and the high Nash-Sutcliff coef- ficients(R2) which were 0.86, 0.92 and 0.91, respectively. [Conclusion] The energy balance snowmelt model has been proved to be a powerful tool for snowmelt estimation.展开更多
Peer-to-peer(P2P)energy trading refers to a type of decentralized transaction,where the energy from distributed energy resources is directly traded between peers.A key challenge in peer-to-peer energy trading is desig...Peer-to-peer(P2P)energy trading refers to a type of decentralized transaction,where the energy from distributed energy resources is directly traded between peers.A key challenge in peer-to-peer energy trading is designing a safe,efficient,and transparent trading model and operating mechanism.In this study,we consider a P2P trading environment based on blockchain technology,where prosumers can submit bids or offers without knowing the reports of others.We propose an Arrow-d’Aspremont-Gerard-Varet(AGV)-based mechanism to encourage prosumers to submit their real reserve price and determine the P2P transaction price.We demonstrate that the AGV mechanism can achieve Bayesian incentive compatibility and budget balance.Kernel density estimation(KDE)is used to derive the prior distribution from the historical bid/offer information of the agents.Case studies are carried out to analyze and evaluate the proposed mechanism.Simulation results verify the effectiveness of the proposed mechanism in guiding agents to report the true reserve price while maximizing social welfare.Moreover,we discuss the advantages of budget balance for decentralized trading by comparing the Vickrey-Clarke-Groves(VCG)and AGV mechanisms.展开更多
[Objective] The micrometeorology features and energy balance of winter wheat canopy were studied.[Method] By means of micrometeorological data of winter wheat canopy at booting stage,heading and flowering stage,fillin...[Objective] The micrometeorology features and energy balance of winter wheat canopy were studied.[Method] By means of micrometeorological data of winter wheat canopy at booting stage,heading and flowering stage,filling stage and mature stage and the data from local meteorological station,the temporal and spatial variation law of micrometeorology features of winter wheat canopy were researched,and the daily and seasonal variation of energy balance were further analyzed.[Result] The daily variation of winter wheat canopy temperature and air temperature showed sinusoidal trend,and air temperature changed with height,while temperature was highest at heading and flowering stage.The daily variation of humidity also showed sinusoidal trend,and humidity was highest and saturation deficit was lowest in the middle of canopy,while the maximum humidity appeared at heading and flowering stage.In addition,the daily variation of wind speed in the upper canopy showed single peak trend.There was obvious daily variation and seasonal variation of energy balance in winter wheat field,and the daily variation of net radiation also showed single peak trend,while sensible heat flux was highest at filling stage and lowest at heading and flowering stage,and latent heat flux was highest at heading and flowering stage and lowest at booting stage.[Conclusion] Our study could provide scientific evidence for the study of disaster prevention and mitigation and the improvement of yield and quality of winter wheat.展开更多
A direct comparison of urban and rural surface energy balances, as well as a variety of other variables including incoming shortwave/longwave radiation and aerosol optical depth, is conducted for the Beijing metropoli...A direct comparison of urban and rural surface energy balances, as well as a variety of other variables including incoming shortwave/longwave radiation and aerosol optical depth, is conducted for the Beijing metropolitan area. The results indicate that, overall, the urban area receives a smaller amount of incoming shortwave radiation but a larger amount of incoming longwave radiation. However, comparisons in the aerosol optical depth and cloud fraction at the two locations suggest that neither aerosol optical depth nor cloud fraction alone can explain the difference in the incoming shortwave radiation. The urban–rural differences in the incoming longwave radiation are unlikely to be caused by the presence of more abundant greenhouse gases over the urban area, as suggested by some previous studies, given that water vapor is the most dominant greenhouse gas and precipitable water is found to be less in urban areas. The higher incoming longwave radiation observed over the urban area is mostly likely due to the higher temperatures of the ambient air. The urban area is also found to always produce higher sensible heat fluxes and lower latent heat fluxes in the growing season. Furthermore, the urban area is associated with a larger amount of available energy(the sum of sensible and latent heat fluxes) than the rural area, except in May and October when evapotranspiration in the rural area significantly exceeds that in the urban area. This study provides observational evidence of urban–rural contrasts in relevant energy-balance components that plausibly arise from urban–rural differences in atmospheric and land-surface conditions.展开更多
Through a comparison between the expressions of master balance laws and the conservation laws derived by Noether's theorem, a unified master balance law and six physically possible balance equations for micropolar co...Through a comparison between the expressions of master balance laws and the conservation laws derived by Noether's theorem, a unified master balance law and six physically possible balance equations for micropolar continuum mechanics are naturally deduced. Among them, by extending the well-known conventional concept of energymomentum tensor, the rather general conservation laws and balance equations named after energy-momentum, energy-angular momentum and energy-energy are obtained. It is clear that the forms of the physical field quantities in the master balance law for the last three cases could not be assumed directly by perceiving through the intuition. Finally, some existing results are reduced immediately as special cases.展开更多
In order to predict long-term flooding under extreme weather conditions in central Asia, an energy balance-based distributed snowmelt runoff model was developed and coupled with the Soil and Water Assessment Tool(SWAT...In order to predict long-term flooding under extreme weather conditions in central Asia, an energy balance-based distributed snowmelt runoff model was developed and coupled with the Soil and Water Assessment Tool(SWAT) model. The model was tested at the Juntanghu watershed on the northern slope of the Tian Shan Mountains, Xinjiang,China. We compared the performances of temperature-index method and energy balanced method in SWAT model by taking Juntanghu river basin as an application example(as the simulation experiment was conducted in Juntanghu River, we call the energy balanced method as SWAT-JTH). The results suggest that the SWAT snowmelt model had overall Nash-Sutcliffe efficiency(NSE) coefficients ranging from 0.61 to 0.85 while the physical based approach had NSE coefficients ranging from 0.58 to0.69. Overall, on monthly scale, the SWAT model provides better results than that from the SWAT-JTH model. However, results generated from both methods seem to be fairly close at a daily scale. Thestructure of the temperature-index method is simple and produces reasonable simulation results if the parameters are well within empirical ranges. Although the data requirement for the energy balance method in current observation is difficult to meet and the existence of uncertainty is associated with the experimental approaches of physical processes, the SWAT-JTH model still produced a reasonably high NSE. We conclude that using temperature-index methods to simulate the snowmelt process is sufficient, but the energy balance-based model is still a good choice to simulate extreme weather conditions especially when the required data input for the model is acquired.展开更多
The heat storage terms in the soil-vegetation-atmosphere system may play an important role in the surface energy budget.In this paper,we evaluate the heat storage terms of a subalpine meadow based on a ficld experimen...The heat storage terms in the soil-vegetation-atmosphere system may play an important role in the surface energy budget.In this paper,we evaluate the heat storage terms of a subalpine meadow based on a ficld experiment conducted in the complex terrain of the eastern Qilian Mountains of Northwest China and their impact on the closure of the surface energy balance under such non-ideal conditions.During the night, the average sum of the storage terms was -5.5 W m,which corresponded to 10.4%of net radiation.The sum of the terms became positive at 0730 LST and negative again at about 1500 LST,with a maximum value of 19 W mobserved at approximately 0830 LST.During the day,the average of the sum of the storage terms was 6.5 W m,which corresponded to 4.0%of net radiation.According to the slopes obtained when linear regression of the net radiation and partitioned fluxes was forced through the origin,there is an imbalance of 14.0%in the subalpine meadow when the storage terms are not considered in the surface energy balance.This imbalance was improved by 3.4%by calculating the sum of the storage terms.The soil heat storage flux gave the highest contribution(1.59%),while the vegetation enthalpy change and the rest of the storage terms were responsible for improvements of 1.04%and 0.77%,respectively.展开更多
A frozen soil parameterization coupling of thermal and hydrological processes is used to investigate how frozen soil processes affect water and energy balances in seasonal frozen soil. Simulation results of soil liqui...A frozen soil parameterization coupling of thermal and hydrological processes is used to investigate how frozen soil processes affect water and energy balances in seasonal frozen soil. Simulation results of soil liquid water content and temperature using soil model with and without the inclusion of freezing and thawing processes are evaluated against observations at the Rosemount field station. By comparing the simulated water and heat fluxes of the two cases, the role of phase change processes in the water and energy balances is analyzed. Soil freezing induces upward water flow towards the freezing front and increases soil water content in the upper soil layer. In particular, soil ice obviously prevents and delays the infiltration during rain at Rosemount. In addition, soil freezingthawing processes alter the partitioning of surface energy fluxes and lead the soil to release more sensible heat into the atmosphere during freezing periods.展开更多
The Src homology 2B(SH2B)family members(SH2B1,SH2B2 and SH2B3)are adaptor signaling proteins containing characteristic SH2 and PH domains.SH2B1(also called SH2-B and PSM)and SH2B2(also called APS)are able to form homo...The Src homology 2B(SH2B)family members(SH2B1,SH2B2 and SH2B3)are adaptor signaling proteins containing characteristic SH2 and PH domains.SH2B1(also called SH2-B and PSM)and SH2B2(also called APS)are able to form homo-or hetero-dimers via their N-terminal dimerization domains.Their C-terminal SH2 domains bind to tyrosyl phosphorylated proteins,including Janus kinase 2(JAK2),TrkA,insulin receptors,insulin-like growth factor-1 receptors,insulin receptor substrate-1(IRS1),and IRS2.SH2B1 enhances leptin signaling by both stimulating JAK2 activity and assembling a JAK2/IRS1/2 signaling complex.SH2B1 promotes insulin signaling by both enhancing insulin receptor catalytic activity and protecting against dephosphorylation of IRS proteins.Accordingly,genetic deletion of SH2B1 results in severe leptin resistance,insulin resistance,hyperphagia,obesity,and type 2 diabetes in mice.Neuronspecific overexpression of SH2B1βtransgenes protects against diet-induced obesity and insulin resistance.SH2B1 in pancreaticβcells promotesβcell expansion and insulin secretion to counteract insulin resistance in obesity.Moreover,numerous SH2B1 mutations are genetically linked to leptin resistance,insulin resistance,obesity,and type 2 diabetes in humans.Unlike SH2B1,SH2B2 and SH2B3 are not required for the maintenance of normal energy and glucose homeostasis.The metabolic function of the SH2B family is conserved from insects to humans.展开更多
The rationality of using strain energy storage index(Wet)for evaluating rockburst proneness was theoretically verified based on linear energy storage(LES)law in this study.The LES law is defined as the linear relation...The rationality of using strain energy storage index(Wet)for evaluating rockburst proneness was theoretically verified based on linear energy storage(LES)law in this study.The LES law is defined as the linear relationship between the elastic strain energy stored inside the solid material and the input strain energy during loading.It is used to determine the elastic strain energy and dissipated strain energy of rock specimens at various loading/unloading stress levels.The results showed that the Wetvalue obtained from experiments was close to the corresponding theoretical one from the LES law.Furthermore,with an increase in the loading/unloading stress level,the ratio of elastic strain energy to dissipated strain energy converged to the peak-strength strain energy storage index(Wp et).This index is stable and can better reflect the relative magnitudes of the stored energy and the dissipated energy of rocks at the whole pre-peak stage than the strain energy storage index.The peak-strength strain energy storage index can replace the conventional strain energy storage index as a new index for evaluating rockburst proneness.展开更多
AIM: To investigate the protective effect of isoflurane on energy balance in isolated hepatocytes during in vitro anoxia/reoxygenation, and to compare isoflurane with halothane. METHODS: Hepatocytes freshly isolated f...AIM: To investigate the protective effect of isoflurane on energy balance in isolated hepatocytes during in vitro anoxia/reoxygenation, and to compare isoflurane with halothane. METHODS: Hepatocytes freshly isolated from fed rats were suspended in Krebs-Henseleit buffer, and incubated in sealed flasks under O2/CO2 or N2/CO2 (95%/5%, V/V) for 30 or 60 min, followed by 5 or 10 min of reoxygenation, with an added volatile anesthetic or not. ATP, ADP, and adenosine monophosphate in hepatocytes were determined by high performance liquid chromatography, and energy charge was calculated. RESULTS: During 30 min of anoxia, the energy charge and total adenine nudeotide steadily increased with the isoflurane dose from 0 to 2 minimum alveolar anesthetic concentration (MAC), then decreased from 2 to 3 MAC. In short incubations (30-35 min) at 1 MAC isoflurane, energy charge modestly decreased during anoxia, which was partially prevented by isoflurane and completely reversed by reoxygenation, and total adenine nudeotide did not decrease. In long incubations (60-70 min), both energy charge and total adenine nudeotide greatly decreased during anoxia, with partial and no reversal by reoxygenation, respectively. Isoflurane partly prevented decreases in both energy charge and total adenine nudeotide during anoxia and reoxygenation. In addition, 1 MAC isoflurane obviously increased ATP/ADP, which could not be changed by 1 MAC halothane. CONCLUSION: Isoflurane partially protects isolated hepatocytes against decreases in both energy charge and total adenine nudeotide during short (reversible) or long (irreversible) anoxia.展开更多
Energy intake prepartum is critically important to health, milk performance, and profitability of dairy cows. The objective of this study was to determine the effect of reduced energy density of dose-up diets on dry m...Energy intake prepartum is critically important to health, milk performance, and profitability of dairy cows. The objective of this study was to determine the effect of reduced energy density of dose-up diets on dry matter intake (DMI), lactation performance and energy balance (EB) in multiparous Holstein cows which were housed in a free-stall barn and fed for ad libitum intake. Thirty-nine dry cows were blocked and assigned randomly to three groups fed a high energy density diet [HD, n = 13; 6.8 MJ of net energy for lactation (NEL)/kg; 14.0% crude protein (CP) ], or a middle energy density diet (MD, n = 13; 6.2 MJ NEh/kg; 14.0% CP), or a low energy density diet (LD, n = 13; 5.4 MJ NEh/kg; 14.0% CP) from d 21 before expected day of calving. After parturition, all cows were fed the same lactation diet to d 70 in milk (DIM). The DMI and NEE intake prepartum were decreased by the reduced energy density diets (P 〈 0.05). The LD group consumed 1.3 last 24 h before calving. The milk yield and the postpartum kg/d (DM) more diet compared with HD group in the DMI were increased by the reduced energy density diet prepartum (P 〈 0.05). The changes in BCS and BW prepartum and postpartum were not affected by prepartum diets HD group had higher milk fat content and lower lactose content compared with LD group during the first 3 wk of lactation (P 〈 0.05). The energy consumption for HD, MD and LD groups were 149.8%, 126.2% and 101.1 % of their calculated energy requirements prepartum (P 〈 0.05), and 72.7%, 73.1% and 7.5.2% during the first 4 wk postpartum, respectively. In conclusion, the low energy density prepartum diet was effective in controlling NF_L intake prepartum, and was beneficial in increasing DMI and milk yield, and alleviating negative EB postpartum.展开更多
One of the basic characteristics of Earth's modern climate is that the Northern Hemisphere(NH) is climatologically warmer than the Southern Hemisphere(SH). Here, model performances of this basic state are examined...One of the basic characteristics of Earth's modern climate is that the Northern Hemisphere(NH) is climatologically warmer than the Southern Hemisphere(SH). Here, model performances of this basic state are examined using simulation results from 26 CMIP6 models. Results show that the CMIP6 models underestimate the contrast in interhemispheric surface temperatures on average(0.8 K for CMIP6 mean versus 1.4 K for reanalysis data mean), and that there is a large intermodel spread, ranging from -0.7 K to 2.3 K. A box model energy budget analysis shows that the contrast in interhemispheric shortwave absorption at the top of the atmosphere, the contrast in interhemispheric greenhouse trapping, and the crossequatorial northward ocean heat transport, are all underestimated in the multimodel mean. By examining the intermodel spread, we find intermodel biases can be tracked back to biases in midlatitude shortwave cloud forcing in AGCMs. Models with a weaker interhemispheric temperature contrast underestimate the shortwave cloud reflection in the SH but overestimate the shortwave cloud reflection in the NH, which are respectively due to underestimation of the cloud fraction over the SH extratropical ocean and overestimation of the cloud liquid water content over the NH extratropical continents.Models that underestimate the interhemispheric temperature contrast exhibit larger double ITCZ biases, characterized by excessive precipitation in the SH tropics. Although this intermodel spread does not account for the multimodel ensemble mean biases, it highlights that improving cloud simulation in AGCMs is essential for simulating the climate realistically in coupled models.展开更多
Theoretical incompleteness of the existing conservation laws of energy for polar continuum mechanics is further clarified. For completeness, the principles of total work and energy and of total work and energy of incr...Theoretical incompleteness of the existing conservation laws of energy for polar continuum mechanics is further clarified. For completeness, the principles of total work and energy and of total work and energy of incremental rate type are postulated. Via total variations of the former and the latter of them, the principles of virtual displacement and microrotation & stress and couple stress as well as virtual velocity and angular velocity & stress rate and couple stress rate are immediately obtained, respectively. From these principles all balance equations and boundary conditions for micropolar mechanics are naturally and simultaneously deduced. The essential differences between the nontraditional results obtained in this paper and the existing conservation laws of energy are expounded.展开更多
文摘In this study,new particle and energy balance equations have been developed to predict the electron temperature and density in locally bounded plasmas.Classical particle and energy balance equations assume that all plasma within a reactor is completely confined only by the reactor walls.However,in industrial plasma reactors for semiconductor manufacturing,the plasma is partially confined by internal reactor structures.We predict the effect of the open boundary area(A′_(L,eff))and ion escape velocity(u_(i))on electron temperature and density by developing new particle and energy balance equations.Theoretically,we found a low ion escape velocity(u_(i)/u_(B)≈0.2)and high open boundary area(A′_(L,eff)/A_(T,eff)≈0.6)to result in an approximately 38%increase in electron density and an 8%decrease in electron temperature compared to values in a fully bounded reactor.Additionally,we suggest that the velocity of ions passing through the open boundary should exceedω_(pi)λ_(De)under the condition E^(2)_(0)?(Φ/λ_(De))^(2).
基金supported by Grant PID2020-117211GB-I00funded by MCIN/AEI/10.13039/501100011033+4 种基金by Grant CIAICO/2021/227funded by the Generalitat Valencianasupported by the Ministerio de Ciencia e Innovacion of Spain(Grant Ref.PID2021-125709OB-C21)funded by MCIN/AEI/10.13039/501100011033/FEDER,UEby the Generalitat Valenciana(CIAICO/2021/224).
文摘Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do not involve any special data structure,and do not induce savings in memory requirements,they are easily implemented on existing codes and are recommended for 1D and 2D simulations when intensive testing is required.The multilevel technique can also be applied to balance laws,but in this case,numerical errors may be induced by the technique.We present a series of numerical tests that point out that the use of monotonicity-preserving interpolatory techniques eliminates the numerical errors observed when using the usual 4-point centered Lagrange interpolation,and leads to a more robust multilevel code for balance laws,while maintaining the efficiency rates observed forhyperbolic conservation laws.
基金supported by the CAS"Light of West China"Program (2021XBZG-XBQNXZ-A-007)the National Natural Science Foundation of China (31971436)the State Key Laboratory of Cryospheric Science,Northwest Institute of Eco-Environment and Resources,Chinese Academy Sciences (SKLCS-OP-2021-06).
文摘Evapotranspiration is an important parameter used to characterize the water cycle of ecosystems.To under-stand the properties of the evapotranspiration and energy balance of a subalpine forest in the southeastern Qinghai-Tibet Plateau,an open-path eddy covariance system was set up to monitor the forest from November 2020 to October 2021 in a core area of the Three Parallel Rivers in the Qing-hai-Tibet Plateau.The results show that the evapotranspira-tion peaked daily,the maximum occurring between 11:00 and 15:00.Environmental factors had significant effects on evapotranspiration,among them,net radiation the greatest(R^(2)=0.487),and relative humidity the least(R^(2)=0.001).The energy flux varied considerably in different seasons and sensible heat flux accounted for the main part of turbulent energy.The energy balance ratio in the dormant season was less than that in the growing season,and there is an energy imbalance at the site on an annual time scale.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 62171113 and 61941113in part by the Fundamental Research Funds for the Central Universities under Grant N2116003 and N2116011.
文摘Mobile Edge Computing(MEC)-based computation offloading is a promising application paradigm for serving large numbers of users with various delay and energy requirements.In this paper,we propose a flexible MECbased requirement-adaptive partial offloading model to accommodate each user's specific preference regarding delay and energy consumption.To address the dimensional differences between time and energy,we introduce two normalized parameters and then derive the computational overhead of processing tasks.Different from existing works,this paper considers practical variations in the user request patterns,and exploits a flexible partial offloading mode to minimize computation overheads subject to tolerable delay,task workload and power constraints.Since the resulting problem is non-convex,we decouple it into two convex subproblems and present an iterative algorithm to obtain a feasible offloading solution.Numerical experiments show that our proposed scheme achieves a significant improvement in computation overheads compared with existing schemes.
文摘The longitudinal wave term within Faraday’s law of electromagnetic induction (Faraday’s law) underwent recovery to ensure its suitability for theoretical derivation of the equation governing longitudinal electromagnetic (LEM) waves. The revised Maxwell’s equations include the crucial parameters being the attenuation time constants of magnetic vortex potential and electric vortex potential generated by external electromagnetic field within the propagation medium. Specific expressions for them are obtained through theoretical analysis. Subsequently, a model for propagating magnetic P-wave generated by the superposition of a left-handed photo and a right-handed photon in a vacuum is formulated based on reevaluated total current law and revised Faraday’s law, covering wave equations, energy equation, as well as propagation mode involving mutual induction and conversion between scalar magnetic field and vortex electric field. Furthermore, through theoretical derivations centered around magnetic P-wave, evidence was presented regarding its ability to absorb huge free energy through the entangled interaction between zero-point vacuum energy field and the torsion field produced by the vortex electric field.
基金the Institute of Applied Physics and Computational Mathematics,Beijing,for the hospitality and support.The second author is supported by the NSFC(Nos.11771054,12072042,91852207)the Sino-German Research Group Project(No.GZ1465)the National Key Project GJXM92579.
文摘This paper addresses the issue of the formulation of weak solutions to systems of nonlinear hyperbolic conservation laws as integral balance laws.The basic idea is that the“meaningful objects”are the fluxes,evaluated across domain boundaries over time intervals.The fundamental result in this treatment is the regularity of the flux trace in the multi-dimensional setting.It implies that a weak solution indeed satisfies the balance law.In fact,it is shown that the flux is Lipschitz continuous with respect to suitable perturbations of the boundary.It should be emphasized that the weak solutions considered here need not be entropy solutions.Furthermore,the assumption imposed on the flux f(u)is quite minimal-just that it is locally bounded.
基金Supported by the Knowledge Innovation project of Chinese Academy of Sciences(CAS)(KZCX2-YW-334)Initiative Project of State Key Basic Research and Development Program of China(973Program,2009CB426309)~~
文摘[Objective] The study aimed to apply energy balance snowmelt model for estimating the snowmelt runoff generated by seasonal snow in Tianshan Mountains. [Method] Three snow water collecting sites were set on a sunny slope in western Tianshan Mountains to measure the snowmelt rates at hourly interval. The positive sensible heat and negative latent heat fluxes were calculated by the energy balance snowmelt model; the snowmelt rate was also estimated by the model. Finally, the ac- curacy for the model was investigated in detail. [Result] The results indicated that sensible heat fluxes and latent heat fluxes accounted for 13.4% of total energy input and 15.1% of energy output, respectively. A good agreement between observed and estimated SWE was proved by low volume difference and the high Nash-Sutcliff coef- ficients(R2) which were 0.86, 0.92 and 0.91, respectively. [Conclusion] The energy balance snowmelt model has been proved to be a powerful tool for snowmelt estimation.
基金supported by National Natural Science Foundation of China(U2066211,52177124,52107134)the Institute of Electrical Engineering,CAS(E155610101)+1 种基金the DNL Cooperation Fund,CAS(DNL202023)the Youth Innovation Promotion Association of CAS(2019143).
文摘Peer-to-peer(P2P)energy trading refers to a type of decentralized transaction,where the energy from distributed energy resources is directly traded between peers.A key challenge in peer-to-peer energy trading is designing a safe,efficient,and transparent trading model and operating mechanism.In this study,we consider a P2P trading environment based on blockchain technology,where prosumers can submit bids or offers without knowing the reports of others.We propose an Arrow-d’Aspremont-Gerard-Varet(AGV)-based mechanism to encourage prosumers to submit their real reserve price and determine the P2P transaction price.We demonstrate that the AGV mechanism can achieve Bayesian incentive compatibility and budget balance.Kernel density estimation(KDE)is used to derive the prior distribution from the historical bid/offer information of the agents.Case studies are carried out to analyze and evaluate the proposed mechanism.Simulation results verify the effectiveness of the proposed mechanism in guiding agents to report the true reserve price while maximizing social welfare.Moreover,we discuss the advantages of budget balance for decentralized trading by comparing the Vickrey-Clarke-Groves(VCG)and AGV mechanisms.
文摘[Objective] The micrometeorology features and energy balance of winter wheat canopy were studied.[Method] By means of micrometeorological data of winter wheat canopy at booting stage,heading and flowering stage,filling stage and mature stage and the data from local meteorological station,the temporal and spatial variation law of micrometeorology features of winter wheat canopy were researched,and the daily and seasonal variation of energy balance were further analyzed.[Result] The daily variation of winter wheat canopy temperature and air temperature showed sinusoidal trend,and air temperature changed with height,while temperature was highest at heading and flowering stage.The daily variation of humidity also showed sinusoidal trend,and humidity was highest and saturation deficit was lowest in the middle of canopy,while the maximum humidity appeared at heading and flowering stage.In addition,the daily variation of wind speed in the upper canopy showed single peak trend.There was obvious daily variation and seasonal variation of energy balance in winter wheat field,and the daily variation of net radiation also showed single peak trend,while sensible heat flux was highest at filling stage and lowest at heading and flowering stage,and latent heat flux was highest at heading and flowering stage and lowest at booting stage.[Conclusion] Our study could provide scientific evidence for the study of disaster prevention and mitigation and the improvement of yield and quality of winter wheat.
基金supported by the National Key Basic Research Program (Grant Nos. 2010CB428502 and 2012CB417203)the National Natural Science Foundation of China (Grant Nos. 41405018 and 41275022)+2 种基金the China Meteorological Administration (Grant No. GYHY201006024)the CAS Strategic Priority Research Program (Grant No. XDA05110101)the support of the State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences (Grant No. LAPC-KF-2009-02)
文摘A direct comparison of urban and rural surface energy balances, as well as a variety of other variables including incoming shortwave/longwave radiation and aerosol optical depth, is conducted for the Beijing metropolitan area. The results indicate that, overall, the urban area receives a smaller amount of incoming shortwave radiation but a larger amount of incoming longwave radiation. However, comparisons in the aerosol optical depth and cloud fraction at the two locations suggest that neither aerosol optical depth nor cloud fraction alone can explain the difference in the incoming shortwave radiation. The urban–rural differences in the incoming longwave radiation are unlikely to be caused by the presence of more abundant greenhouse gases over the urban area, as suggested by some previous studies, given that water vapor is the most dominant greenhouse gas and precipitable water is found to be less in urban areas. The higher incoming longwave radiation observed over the urban area is mostly likely due to the higher temperatures of the ambient air. The urban area is also found to always produce higher sensible heat fluxes and lower latent heat fluxes in the growing season. Furthermore, the urban area is associated with a larger amount of available energy(the sum of sensible and latent heat fluxes) than the rural area, except in May and October when evapotranspiration in the rural area significantly exceeds that in the urban area. This study provides observational evidence of urban–rural contrasts in relevant energy-balance components that plausibly arise from urban–rural differences in atmospheric and land-surface conditions.
基金Project supported by the National Natural Science Foundation of China (Nos.10072024 and 10472041)
文摘Through a comparison between the expressions of master balance laws and the conservation laws derived by Noether's theorem, a unified master balance law and six physically possible balance equations for micropolar continuum mechanics are naturally deduced. Among them, by extending the well-known conventional concept of energymomentum tensor, the rather general conservation laws and balance equations named after energy-momentum, energy-angular momentum and energy-energy are obtained. It is clear that the forms of the physical field quantities in the master balance law for the last three cases could not be assumed directly by perceiving through the intuition. Finally, some existing results are reduced immediately as special cases.
基金financially supported by the Ministry of Water Resources (MWR) public sector research and special funds-the most stringent in arid zone water resources management key technologies (201301103)National Nature Science Foundation of China (NSFC) under Grant No. 41130641, 41201025+1 种基金Ministry of Education Key Laboratory of Eco-Oasis Open Topic-Moisture change in Central Asia and its influence on precipitation in Xinjang Province (XJDX0201-2013-07)the Tianshan Scholar Start-up Fund provided by Xinjiang University
文摘In order to predict long-term flooding under extreme weather conditions in central Asia, an energy balance-based distributed snowmelt runoff model was developed and coupled with the Soil and Water Assessment Tool(SWAT) model. The model was tested at the Juntanghu watershed on the northern slope of the Tian Shan Mountains, Xinjiang,China. We compared the performances of temperature-index method and energy balanced method in SWAT model by taking Juntanghu river basin as an application example(as the simulation experiment was conducted in Juntanghu River, we call the energy balanced method as SWAT-JTH). The results suggest that the SWAT snowmelt model had overall Nash-Sutcliffe efficiency(NSE) coefficients ranging from 0.61 to 0.85 while the physical based approach had NSE coefficients ranging from 0.58 to0.69. Overall, on monthly scale, the SWAT model provides better results than that from the SWAT-JTH model. However, results generated from both methods seem to be fairly close at a daily scale. Thestructure of the temperature-index method is simple and produces reasonable simulation results if the parameters are well within empirical ranges. Although the data requirement for the energy balance method in current observation is difficult to meet and the existence of uncertainty is associated with the experimental approaches of physical processes, the SWAT-JTH model still produced a reasonably high NSE. We conclude that using temperature-index methods to simulate the snowmelt process is sufficient, but the energy balance-based model is still a good choice to simulate extreme weather conditions especially when the required data input for the model is acquired.
基金supported by the National Natural Science Foundation of China(Grant Nos.40575006 and 40830957)the Public Welfare Research Project of China(Grant Nos.GYHY200806021 and 2005DIB3J100).
文摘The heat storage terms in the soil-vegetation-atmosphere system may play an important role in the surface energy budget.In this paper,we evaluate the heat storage terms of a subalpine meadow based on a ficld experiment conducted in the complex terrain of the eastern Qilian Mountains of Northwest China and their impact on the closure of the surface energy balance under such non-ideal conditions.During the night, the average sum of the storage terms was -5.5 W m,which corresponded to 10.4%of net radiation.The sum of the terms became positive at 0730 LST and negative again at about 1500 LST,with a maximum value of 19 W mobserved at approximately 0830 LST.During the day,the average of the sum of the storage terms was 6.5 W m,which corresponded to 4.0%of net radiation.According to the slopes obtained when linear regression of the net radiation and partitioned fluxes was forced through the origin,there is an imbalance of 14.0%in the subalpine meadow when the storage terms are not considered in the surface energy balance.This imbalance was improved by 3.4%by calculating the sum of the storage terms.The soil heat storage flux gave the highest contribution(1.59%),while the vegetation enthalpy change and the rest of the storage terms were responsible for improvements of 1.04%and 0.77%,respectively.
基金supported by the National Basic Research Program of China under Grant No 2006CB400504National Natural Science Foundation of China under Grant Nos 40605027 and 40775050
文摘A frozen soil parameterization coupling of thermal and hydrological processes is used to investigate how frozen soil processes affect water and energy balances in seasonal frozen soil. Simulation results of soil liquid water content and temperature using soil model with and without the inclusion of freezing and thawing processes are evaluated against observations at the Rosemount field station. By comparing the simulated water and heat fluxes of the two cases, the role of phase change processes in the water and energy balances is analyzed. Soil freezing induces upward water flow towards the freezing front and increases soil water content in the upper soil layer. In particular, soil ice obviously prevents and delays the infiltration during rain at Rosemount. In addition, soil freezingthawing processes alter the partitioning of surface energy fluxes and lead the soil to release more sensible heat into the atmosphere during freezing periods.
文摘The Src homology 2B(SH2B)family members(SH2B1,SH2B2 and SH2B3)are adaptor signaling proteins containing characteristic SH2 and PH domains.SH2B1(also called SH2-B and PSM)and SH2B2(also called APS)are able to form homo-or hetero-dimers via their N-terminal dimerization domains.Their C-terminal SH2 domains bind to tyrosyl phosphorylated proteins,including Janus kinase 2(JAK2),TrkA,insulin receptors,insulin-like growth factor-1 receptors,insulin receptor substrate-1(IRS1),and IRS2.SH2B1 enhances leptin signaling by both stimulating JAK2 activity and assembling a JAK2/IRS1/2 signaling complex.SH2B1 promotes insulin signaling by both enhancing insulin receptor catalytic activity and protecting against dephosphorylation of IRS proteins.Accordingly,genetic deletion of SH2B1 results in severe leptin resistance,insulin resistance,hyperphagia,obesity,and type 2 diabetes in mice.Neuronspecific overexpression of SH2B1βtransgenes protects against diet-induced obesity and insulin resistance.SH2B1 in pancreaticβcells promotesβcell expansion and insulin secretion to counteract insulin resistance in obesity.Moreover,numerous SH2B1 mutations are genetically linked to leptin resistance,insulin resistance,obesity,and type 2 diabetes in humans.Unlike SH2B1,SH2B2 and SH2B3 are not required for the maintenance of normal energy and glucose homeostasis.The metabolic function of the SH2B family is conserved from insects to humans.
基金supported by the National Natural Science Foundation of China(Grant Nos.42077244 and 41877272)the Fundamental Research Funds for the Central Universities(Grant No.2242022k30054)。
文摘The rationality of using strain energy storage index(Wet)for evaluating rockburst proneness was theoretically verified based on linear energy storage(LES)law in this study.The LES law is defined as the linear relationship between the elastic strain energy stored inside the solid material and the input strain energy during loading.It is used to determine the elastic strain energy and dissipated strain energy of rock specimens at various loading/unloading stress levels.The results showed that the Wetvalue obtained from experiments was close to the corresponding theoretical one from the LES law.Furthermore,with an increase in the loading/unloading stress level,the ratio of elastic strain energy to dissipated strain energy converged to the peak-strength strain energy storage index(Wp et).This index is stable and can better reflect the relative magnitudes of the stored energy and the dissipated energy of rocks at the whole pre-peak stage than the strain energy storage index.The peak-strength strain energy storage index can replace the conventional strain energy storage index as a new index for evaluating rockburst proneness.
基金Supported by the National Natural Science Foundation of China, No. 39900140
文摘AIM: To investigate the protective effect of isoflurane on energy balance in isolated hepatocytes during in vitro anoxia/reoxygenation, and to compare isoflurane with halothane. METHODS: Hepatocytes freshly isolated from fed rats were suspended in Krebs-Henseleit buffer, and incubated in sealed flasks under O2/CO2 or N2/CO2 (95%/5%, V/V) for 30 or 60 min, followed by 5 or 10 min of reoxygenation, with an added volatile anesthetic or not. ATP, ADP, and adenosine monophosphate in hepatocytes were determined by high performance liquid chromatography, and energy charge was calculated. RESULTS: During 30 min of anoxia, the energy charge and total adenine nudeotide steadily increased with the isoflurane dose from 0 to 2 minimum alveolar anesthetic concentration (MAC), then decreased from 2 to 3 MAC. In short incubations (30-35 min) at 1 MAC isoflurane, energy charge modestly decreased during anoxia, which was partially prevented by isoflurane and completely reversed by reoxygenation, and total adenine nudeotide did not decrease. In long incubations (60-70 min), both energy charge and total adenine nudeotide greatly decreased during anoxia, with partial and no reversal by reoxygenation, respectively. Isoflurane partly prevented decreases in both energy charge and total adenine nudeotide during anoxia and reoxygenation. In addition, 1 MAC isoflurane obviously increased ATP/ADP, which could not be changed by 1 MAC halothane. CONCLUSION: Isoflurane partially protects isolated hepatocytes against decreases in both energy charge and total adenine nudeotide during short (reversible) or long (irreversible) anoxia.
基金financially supported by National Natural Science Foundation of China(31272469,31372334)China Agriculture Research System(CARS-37)
文摘Energy intake prepartum is critically important to health, milk performance, and profitability of dairy cows. The objective of this study was to determine the effect of reduced energy density of dose-up diets on dry matter intake (DMI), lactation performance and energy balance (EB) in multiparous Holstein cows which were housed in a free-stall barn and fed for ad libitum intake. Thirty-nine dry cows were blocked and assigned randomly to three groups fed a high energy density diet [HD, n = 13; 6.8 MJ of net energy for lactation (NEL)/kg; 14.0% crude protein (CP) ], or a middle energy density diet (MD, n = 13; 6.2 MJ NEh/kg; 14.0% CP), or a low energy density diet (LD, n = 13; 5.4 MJ NEh/kg; 14.0% CP) from d 21 before expected day of calving. After parturition, all cows were fed the same lactation diet to d 70 in milk (DIM). The DMI and NEE intake prepartum were decreased by the reduced energy density diets (P 〈 0.05). The LD group consumed 1.3 last 24 h before calving. The milk yield and the postpartum kg/d (DM) more diet compared with HD group in the DMI were increased by the reduced energy density diet prepartum (P 〈 0.05). The changes in BCS and BW prepartum and postpartum were not affected by prepartum diets HD group had higher milk fat content and lower lactose content compared with LD group during the first 3 wk of lactation (P 〈 0.05). The energy consumption for HD, MD and LD groups were 149.8%, 126.2% and 101.1 % of their calculated energy requirements prepartum (P 〈 0.05), and 72.7%, 73.1% and 7.5.2% during the first 4 wk postpartum, respectively. In conclusion, the low energy density prepartum diet was effective in controlling NF_L intake prepartum, and was beneficial in increasing DMI and milk yield, and alleviating negative EB postpartum.
基金supported by the National Natural Science Foundation of China (Grant No. 41888101)。
文摘One of the basic characteristics of Earth's modern climate is that the Northern Hemisphere(NH) is climatologically warmer than the Southern Hemisphere(SH). Here, model performances of this basic state are examined using simulation results from 26 CMIP6 models. Results show that the CMIP6 models underestimate the contrast in interhemispheric surface temperatures on average(0.8 K for CMIP6 mean versus 1.4 K for reanalysis data mean), and that there is a large intermodel spread, ranging from -0.7 K to 2.3 K. A box model energy budget analysis shows that the contrast in interhemispheric shortwave absorption at the top of the atmosphere, the contrast in interhemispheric greenhouse trapping, and the crossequatorial northward ocean heat transport, are all underestimated in the multimodel mean. By examining the intermodel spread, we find intermodel biases can be tracked back to biases in midlatitude shortwave cloud forcing in AGCMs. Models with a weaker interhemispheric temperature contrast underestimate the shortwave cloud reflection in the SH but overestimate the shortwave cloud reflection in the NH, which are respectively due to underestimation of the cloud fraction over the SH extratropical ocean and overestimation of the cloud liquid water content over the NH extratropical continents.Models that underestimate the interhemispheric temperature contrast exhibit larger double ITCZ biases, characterized by excessive precipitation in the SH tropics. Although this intermodel spread does not account for the multimodel ensemble mean biases, it highlights that improving cloud simulation in AGCMs is essential for simulating the climate realistically in coupled models.
文摘Theoretical incompleteness of the existing conservation laws of energy for polar continuum mechanics is further clarified. For completeness, the principles of total work and energy and of total work and energy of incremental rate type are postulated. Via total variations of the former and the latter of them, the principles of virtual displacement and microrotation & stress and couple stress as well as virtual velocity and angular velocity & stress rate and couple stress rate are immediately obtained, respectively. From these principles all balance equations and boundary conditions for micropolar mechanics are naturally and simultaneously deduced. The essential differences between the nontraditional results obtained in this paper and the existing conservation laws of energy are expounded.