期刊文献+
共找到3,859篇文章
< 1 2 193 >
每页显示 20 50 100
Enhancing Renewable Energy Integration:A Gaussian-Bare-Bones Levy Cheetah Optimization Approach to Optimal Power Flow in Electrical Networks
1
作者 Ali S.Alghamdi Mohamed A.Zohdy Saad Aldoihi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1339-1370,共32页
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n... In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids. 展开更多
关键词 Renewable energy integration optimal power flow stochastic renewable energy sources gaussian-bare-bones levy cheetah optimizer electrical network optimization carbon tax optimization
下载PDF
Overview of the Global Electricity System in Oman Considering Energy Demand Model Forecast
2
作者 Ahmed Al-Abri Kenneth E.Okedu 《Energy Engineering》 EI 2023年第2期409-423,共15页
Lately,in modern smart power grids,energy demand for accurate forecast of electricity is gaining attention,with increased interest of research.This is due to the fact that a good energy demand forecast would lead to p... Lately,in modern smart power grids,energy demand for accurate forecast of electricity is gaining attention,with increased interest of research.This is due to the fact that a good energy demand forecast would lead to proper responses for electricity demand.In addition,proper energy demand forecast would ensure efficient planning of the electricity industry and is critical in the scheduling of the power grid capacity and management of the entire power network.As most power systems are been deregulated and with the rapid introduction and development of smart-metering technologies in Oman,new opportunities may arise considering the efficiency and reliability of the power system;like price-based demand response programs.These programs could either be a large scale for household,commercial or industrial users.However,excellent demand forecasting models are crucial for the deployment of these smart metering in the power grid based on good knowledge of the electricity market structure.Consequently,in this paper,an overview of the Oman regulatory regime,financial mechanism,price control,and distribution system security standard were presented.More so,the energy demand forecast in Oman was analysed,using the econometric model to forecasts its energy peak demand.The energy econometric analysis in this study describes the relationship between the growth of historical electricity consumption and macro-economic parameters(by region,and by tariff),considering a case study of Mazoon Electricity Distribution Company(MZEC),which is one of the major power distribution companies in Oman,for effective energy demand in the power grid. 展开更多
关键词 energy forecast energy demand load demand power grids electricity sector
下载PDF
Estimate of China's energy carbon emissions peak and analysis on electric power carbon emissions 被引量:6
3
作者 WANG Zhi-Xuan ZHANG Jing-Jie +2 位作者 PAN Li YANG Fan SHI Li-Na 《Advances in Climate Change Research》 SCIE 2014年第4期181-188,共8页
China's energy carbon emissions are projected to peak in 2030 with approximately 110%of its 2020 level under the following conditions:1)China's gross primary energy consumption is 5 Gtce in 2020 and 6 Gtce in ... China's energy carbon emissions are projected to peak in 2030 with approximately 110%of its 2020 level under the following conditions:1)China's gross primary energy consumption is 5 Gtce in 2020 and 6 Gtce in 2030;2)coal's share of the energy consumption is 61%in 2020 and55%in 2030;3)non-fossil energy's share increases from 15%in 2020 to 20%in 2030;4)through 2030,China's GDP grows at an average annual rate of 6%;5)the annual energy consumption elasticity coefficient is 0.30 in average;and 6)the annual growth rate of energy consumption steadily reduces to within 1%.China's electricity generating capacity would be 1,990 GW,with 8,600 TW h of power generation output in 2020.Of that output 66%would be from coal,5%from gas,and 29%from non-fossil energy.By 2030,electricity generating capacity would reach3,170 GW with 11,900 TW h of power generation output.Of that output,56%would be from coal,6%from gas,and 37%from non-fossil energy.From 2020 to 2030,CO2emissions from electric power would relatively fall by 0.2 Gt due to lower coal consumption,and relatively fall by nearly 0.3 Gt with the installation of more coal-fired cogeneration units.During 2020e2030,the portion of carbon emissions from electric power in China's energy consumption is projected to increase by 3.4 percentage points.Although the carbon emissions from electric power would keep increasing to 118%of the 2020 level in 2030,the electric power industry would continue to play a decisive role in achieving the goal of increase in non-fossil energy use.This study proposes countermeasures and recommendations to control carbon emissions peak,including energy system optimization,green-coal-fired electricity generation,and demand side management. 展开更多
关键词 能源消费弹性系数 二氧化碳排放量 电力行业 排放分析 化石能源 估计 峰值 热电联产机组
下载PDF
Statistical Analysis and Energy Planning of Electric Power Supply Systems with Intelligent Control
4
作者 Valentin Gyurov Vladimir Chikov 《Journal of Energy and Power Engineering》 2014年第4期702-708,共7页
关键词 电力供应系统 能源规划 统计分析 智能控制 数字测量系统 能源管理系统 统计方法 保加利亚
下载PDF
The Impact of Hydrogen Energy Storage on the Electricity Harvesting
5
作者 Ghassan Mousa Ayman A.Aly +1 位作者 Imran Khan DagØivind Madsen 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期1963-1978,共16页
The economics,infrastructure,transportation,and level of living of a country are all influenced by energy.The gap between energy usage and availabil-ity is a global issue.Currently,all countries rely on fossil fuels fo... The economics,infrastructure,transportation,and level of living of a country are all influenced by energy.The gap between energy usage and availabil-ity is a global issue.Currently,all countries rely on fossil fuels for energy genera-tion,and these fossil fuels are not sustainable.The hydrogen proton exchange membrane fuel cell(PEMFC)power system is both clean and efficient.The fuel delivery system and the PEMFC make up the majority of the PEMFC power sys-tem.The lack of an efficient,safe,and cost-effective hydrogen storage system is still a major barrier to its widespread use.Solid hydrogen storage has the large capacity,safety and good reversibility.As a hydrogen source system,the hydro-gen supply characteristics affect the characteristics of the PEMFC at the output.In this paper,a mathematical model of a hydrogen source reactor and PEMFC based on chemical absorption/desorption of solid hydrogen storage is established,and a simulation model of a PEMFC power system coupled with solid hydrogen storage is established using MATLAB/SIMULINK software,and the hydrogen supply of the reactor is analyzed in detail.The influence of prominent factors is evaluated.The research results show that the proposed method improved the system perfor-mance.At the same time,increasing the PEMFC temperature,increasing the area of the proton exchange membrane and the oxygen supply pressure can increase the output power of the power system. 展开更多
关键词 Hydrogen energy fuel cell power system optimization electrical energy harvesting
下载PDF
Electrical characteristics of new three-phase traction power supply system for rail transit
6
作者 Xiaohong Huang Hanlin Wang +4 位作者 Qunzhan Li Naiqi Yang Tao Ren You Peng Haoyang Li 《Railway Engineering Science》 2023年第1期75-88,共14页
A novel three-phase traction power supply system is proposed to eliminate the adverse effects caused by electric phase separation in catenary and accomplish a unifying manner of traction power supply for rail transit.... A novel three-phase traction power supply system is proposed to eliminate the adverse effects caused by electric phase separation in catenary and accomplish a unifying manner of traction power supply for rail transit.With the application of two-stage three-phase continuous power supply structure,the electrical characteristics exhibit new features differing from the existing traction system.In this work,the principle for voltage levels determining two-stage network is dissected in accordance with the requirements of traction network and electric locomotive.The equivalent model of three-phase traction system is built for deducing the formula of current distribution and voltage losses.Based on the chain network model of the traction network,a simulation model is established to analyze the electrical characteristics such as traction current distribution,voltage losses,system equivalent impedance,voltage distribution,voltage unbalance and regenerative energy utilization.In a few words,quite a lot traction current of about 99%is undertaken by long-section cable network.The proportion of system voltage losses is small attributed to the two-stage three-phase power supply structure,and the voltage unbal-ance caused by impedance asymmetry of traction network is less than 1‰.In addition,the utilization rate of regenerative energy for locomotive achieves a significant promotion of over 97%. 展开更多
关键词 Three-phase AC power supply Two-stage power supply structure electrical characteristics Current distribution Voltage losses Regenerative energy
下载PDF
Research on Optimal Configuration of Energy Storage in Wind-Solar Microgrid Considering Real-Time Electricity Price
7
作者 Zhenzhen Zhang Qingquan Lv +4 位作者 Long Zhao Qiang Zhou Pengfei Gao Yanqi Zhang Yimin Li 《Energy Engineering》 EI 2023年第7期1637-1654,共18页
Capacity allocation and energy management strategies for energy storage are critical to the safety and economical operation of microgrids.In this paper,an improved energymanagement strategy based on real-time electric... Capacity allocation and energy management strategies for energy storage are critical to the safety and economical operation of microgrids.In this paper,an improved energymanagement strategy based on real-time electricity price combined with state of charge is proposed to optimize the economic operation of wind and solar microgrids,and the optimal allocation of energy storage capacity is carried out by using this strategy.Firstly,the structure and model of microgrid are analyzed,and the outputmodel of wind power,photovoltaic and energy storage is established.Then,considering the interactive power cost between the microgrid and the main grid and the charge-discharge penalty cost of energy storage,an optimization objective function is established,and an improved energy management strategy is proposed on this basis.Finally,a physicalmodel is built inMATLAB/Simulink for simulation verification,and the energy management strategy is compared and analyzed on sunny and rainy days.The initial configuration cost function of energy storage is added to optimize the allocation of energy storage capacity.The simulation results show that the improved energy management strategy can make the battery charge-discharge response to real-time electricity price and state of charge better than the traditional strategy on sunny or rainy days,reduce the interactive power cost between the microgrid system and the power grid.After analyzing the change of energy storage power with cost,we obtain the best energy storage capacity and energy storage power. 展开更多
关键词 energy storage optimization real-time electricity price state of charge energy management strategy interactive power
下载PDF
Towards an Ethical and Ecological Approach to Electricity Generation: A Comparative Analysis of Coal and Nuclear Power in the USA
8
作者 Joseph R. Laracy 《Open Journal of Ecology》 2020年第6期370-379,共10页
According to the US Energy Information Administration, about 4118 billion kilowatt-hours (kWh) electricity was generated at large-scale generation facilities in 2019. About 63% of this was from fossil fuels, e.g., coa... According to the US Energy Information Administration, about 4118 billion kilowatt-hours (kWh) electricity was generated at large-scale generation facilities in 2019. About 63% of this was from fossil fuels, e.g., coal, natural gas, petroleum, and other gases. Environmental exposure to particulates, sulfur dioxide, nitrogen oxides, mercury, arsenic, radioactive fly ash, and other pollutants are extremely detrimental to the human cardiovascular, respiratory, and nervous systems. Such exposure increases the risk of lung cancer, stroke, heart disease, chronic respiratory diseases, respiratory infections, and other illnesses. In light of the challenges associated with renewables providing large quantities of base load power, as well as other factors, the benefits offered by nuclear power should be reexamined by policy makers to move the country towards a more ecological and ethical method of electric power production. This paper offers a concise analysis of many of the salient issues, comparing electricity generation from coal plants and light water nuclear reactors. 展开更多
关键词 Nuclear energy COAL electric power Generation ECOLOGY Safety HEALTH
下载PDF
Frequency Control of Power System with Renewable Power Sources by HVDC Interconnection Line and Battery Considering Energy Balancing
9
作者 Shoyu Onuka Atsushi Umemura +4 位作者 Rion Takahashi Junji Tamura Atsushi Sakahara Fumihito Tosaka Ryosuke Nakamoto 《Journal of Power and Energy Engineering》 2020年第4期11-24,共14页
Recently, introduction of renewable energy sources like wind power generation and photovoltaic power generation has been increasing from the viewpoint of environmental problems. However, renewable energy power supplie... Recently, introduction of renewable energy sources like wind power generation and photovoltaic power generation has been increasing from the viewpoint of environmental problems. However, renewable energy power supplies have unstable output due to the influence of weather conditions such as wind speed variations, which may cause fluctuations of voltage and frequency in the power system. This paper proposes fuzzy PD based virtual inertia control system to decrease frequency fluctuations in power system caused by fluctuating output of renewable energy sources. The proposed new method is based on the coordinated control of HVDC interconnection line and battery, and energy balancing control is also incorporated in it. Finally, it is concluded that the proposed system is very effective for suppressing the frequency fluctuations of the power system due to the large-scale wind power generation and solar power generation and also for keeping the energy balancing in the HVDC transmission line. 展开更多
关键词 High Voltage Direct Current (HVDC) Transmission power System Frequency CONTROL COORDINATED CONTROL BATTERY RENEWABLE power energy Balancing
下载PDF
Optimisation of Electrical Distribution System by Using Solar Thermal Powered Systems and Its Impact on Electrical Distribution Feeders
10
作者 Punnaiah Veeraboina G. Yesuratnam 《Energy and Power Engineering》 2016年第4期219-229,共11页
In this research, the performance of the solar thermal powered systems (STPS) is analyzed with different models (without inserts, with inserts and with Nano fluids with different concentrations) and its impact on the ... In this research, the performance of the solar thermal powered systems (STPS) is analyzed with different models (without inserts, with inserts and with Nano fluids with different concentrations) and its impact on the Electric load in a residential/Institutional Electrical Distribution system. For this purpose, the electrical and solar thermal water heater is tested and validated. Solar thermal powered systems and its impact on the Institutional electrical distribution feeders are tested and compared with the energy efficiency (EE) and cost optimization. The goal of this paper is to analyze the impact of solar thermal energy on electrical energy consumption in the electrical distribution feeder level. The electrical system cost and energy consumptions are tabulated and observed that there is a considerable savings. 展开更多
关键词 Solar Thermal power Systems electrical Distribution Feeder energy Consumption Automatic power Factor Correction electrical Heaters
下载PDF
Decoupling the Electrical and Entropic Contributions to Energy Transfer from Infrared Radiation to a Power Generator
11
作者 Aidan L. Gordon Yosyp Schwab +7 位作者 Brian N. Lang Graham P. Gearhart Tara R. Jobin Justin M. Kaczmar Zachary J. Marinelli Harkirat S. Mann Brian C. Utter Giovanna Scarel 《World Journal of Condensed Matter Physics》 2015年第4期301-318,共18页
The interaction between infrared radiation and a power generator device in time is studied as a route to harvest infrared, and possibly other electromagnetic radiations. Broadening the spectrum of the usable electroma... The interaction between infrared radiation and a power generator device in time is studied as a route to harvest infrared, and possibly other electromagnetic radiations. Broadening the spectrum of the usable electromagnetic spectrum would greatly contribute to the renewable and sustainable energy sources available to humankind. In particular, low frequency and low power radiation is important for applications on ships, satellites, cars, personal backpacks, and, more generally, where non-dangerous energy is needed at all hours of the day, independent of weather conditions. In this work, we identify an electric and an entropic contribution to the energy transfer from low power infrared radiation to the power generator device, representing electrical and thermal contributions to the power generation. The electric contribution prevails, and is important because it offers multiple ways to increase the voltage produced. For example, placing black-colored gaffer tape on the illuminated face doubles the voltage produced, while the temperature difference, thus the entropic contribution, is not sensitive to the presence of the tape. We recognize the electric contribution through the fast changes it imparts to the voltage output of the power generator device, which mirror the instabilities in time of the infrared radiation. The device thus acts as sensor of the infrared radiation’s behavior in time. On the other hand, we distinguish the entropic contribution through the slow changes it causes to the voltage output of the power generator device, which reflect the relative delay with which the two faces of the device respond to thermal perturbations. 展开更多
关键词 INFRARED power Generators energy HARVESTING electric CONTRIBUTION
下载PDF
Modeling and Controlling of an Active Power Filter Using Photovoltaic System with Reduced Energy Storage Capacitor
12
作者 Tsair-Fwu Lee Homg-Yuan Wu +1 位作者 Chieh Lee Yu Lee 《Journal of Chemistry and Chemical Engineering》 2010年第11期34-43,共10页
关键词 三相有源电力滤波器 控制电路 光伏系统 储能电容 电容滤波器 PSPICE模拟 用具 建模
下载PDF
Renewable Energy:Wind Turbines,Solar Cells,Small Hydroelectric Plants,Biomass,and Geothermal Sources of Energy
13
作者 Natasa A. Kablar 《Journal of Energy and Power Engineering》 2019年第4期162-172,共11页
In this paper,we present five basic types of renewable energy sources,namely:wind turbines,solar cells,small hydroelectric plants,biomass,and geothermal sources of energy.Wind turbines transform energy of wind into el... In this paper,we present five basic types of renewable energy sources,namely:wind turbines,solar cells,small hydroelectric plants,biomass,and geothermal sources of energy.Wind turbines transform energy of wind into electrical energy,solar cells transform energy of sun into electric energy,hydroelectric plants transform energy of water into electric energy,devices or machines can be constructed to transform energy of biomass into heat energy,and geothermal energy into some form of energy.In this paper we present basic information and reasons why there is need today to use these forms of energy—called green energies,we present how these devices or machines function,and we propose for future work design of typical devices or machines that will satisfy basic functional needs. 展开更多
关键词 Wind energy solar energy water energy BIOMASS energy GEOTHERMAL energy RENEWABLE ENERGIES electrical power generation of electricity
下载PDF
Automatic Generation Control Strategy Based on Balance of Daily Electric Energy
14
作者 By Yang Wei,Sun Qi and Wu Junji College of Power Engineering, Nanjing University of Science & Technology 《Electricity》 2005年第A04期32-36,共5页
An automatic generation control strategy based on balance of daily total electric energy is put forward. It makes the balance between actual total generated energy controlled by automatic generation system and planned... An automatic generation control strategy based on balance of daily total electric energy is put forward. It makes the balance between actual total generated energy controlled by automatic generation system and planned total energy on base of area control error, and makes the actual 24-hour active power load curve to approach the planned load curve. The generated energy is corrected by velocity weighting factor so that it conducts dynamic regulation and reaches the speed of response. Homologous strategy is used according to the real-time data in the operation of automatic generation control. Results of simulation are perfect and power energy compensation control with ideal effect can be achieved in the particular duration. 展开更多
关键词 AGC ACE VELOCITY weighting FACTOR balance of DAILY
下载PDF
Pressure Gradient, Power, and Energy of Vortices
15
作者 Jack Denur 《Open Journal of Fluid Dynamics》 2018年第2期216-247,共32页
We consider small vortices, such as tornadoes, dust devils, whirlpools, and small hurricanes at low latitudes, for which the Coriolis force can be neglected. Such vortices are (at least approximately) cylindrically sy... We consider small vortices, such as tornadoes, dust devils, whirlpools, and small hurricanes at low latitudes, for which the Coriolis force can be neglected. Such vortices are (at least approximately) cylindrically symmetrical about a vertical axis through the center of a calm central region or eye of radius . In the region fluid (gas or liquid) circulates about the eye with speed . We take to be the outer periphery of the vortex, where the fluid speed is reduced to that of the surrounding wind field (in the cases of tornadoes, dust devils, and small hurricanes at low latitudes) or deemed negligible (in the case of whirlpools). If , angular momentum is conserved within the fluid itself;if , angular momentum must be exchanged with Earth to ensure conservation of total angular momentum. We derive the steepness and upper limit of the pressure gradients in vortices. We then discuss the power and energy of vortices. We compare the kinetic energy of atmospheric vortices and the power required to maintain them against frictional dissipation with the same quantities for Earth’s atmosphere as a whole. We explain why the kinetic energy of atmospheric vortices must be replaced on much shorter timescales than is the case for Earth’s atmosphere as a whole. Brief comparisons of cyclostrophic flow with geostrophic and friction-balanced flows are then provided. We then consider an analogy that might be drawn, at least to some extent, with gravitational systems, considering mainly spherically-symmetrical and cylindrically-symmetrical ones. Generation of kinetic energy at the expense of potential energy in fluid vortices, in geostrophic and friction-balanced flows, and in gravitational systems is then briefly discussed. We explain the variations of pressure and gravitational gradients corresponding to generation of kinetic energy exceeding, equaling, and falling short of frictional dissipation. In the Appendix, we describe a simple method for maximizing power extraction from environmental fluid (air or water) flows. In summary, we provide an overview of features and energetics of Earth’s environmental fluid flows and of gravitational analogies thereto that, even though mostly semiquantitative, hopefully may be helpful. 展开更多
关键词 Vortex Cyclostrophic FLOW Angular MOMENTUM Pressure Gradient Geostrophic FLOW Friction-balanced FLOW power energy Gravity
下载PDF
Seismic-Geodynamic Monitoring of Main Electric Power-Stations in East Europe and North Asia
16
作者 Yury Gatinsky Dmitry Rundquist +1 位作者 Galina Vladova Tatiana Prokhorova 《International Journal of Geosciences》 2011年第2期75-83,共9页
In east Europe and north Asia the majority of nuclear power-stations (NPS) as well as large hydro-electric (HES) and thermal electric stations (TES) are located within the north Eurasian lithosphere plate, which is ch... In east Europe and north Asia the majority of nuclear power-stations (NPS) as well as large hydro-electric (HES) and thermal electric stations (TES) are located within the north Eurasian lithosphere plate, which is characterized by the low seismicity and weak modern tectonic activity besides the different exogenetic processes. Some operating and projected NPS are relatively near to zones of the moderate seismicity in the Kaliningrad Region of northwest Russia and in south Ukraine. HES and TES in Baltic, Byelorussia and Ukraine are in the same position. Zones of more intensive seismicity and existence of active faults include NPS, HEP and TEP in the Urals, the Kola Peninsula, south Siberia, Transbaikal and Far East regions of Russia. Some of these stations are situated within crust blocks in transit zones, which separate main lithosphere plates and are characterized by increased tectonic mobility. The electric power-stations are most danger in the transit zones between north Eurasian, Arabian and Indian lithosphere plates, where collision processes have yet not stopped. This concerns electric stations in central Asia and Caucasus including NPS in Armenia. Seven schemes of the seismic energy distribution are composed for different parts of east Europe and north Asia. The location of nuclear and main other electric power-stations on them makes it possible to form a correct estimate of negative consequences connected with the up-to-date inner-continental tectonic activity. 展开更多
关键词 electric power-Station SEISMICITY Active Fault LITHOSPHERE Plate TRANSIT Zone CRUST Block SEISMIC energy
下载PDF
Estimating the Impacts of Nuclear Phase-out and FIT on Tokyo Electric Power Company Jurisdiction
17
作者 Ryo Eto Yohji Uchiyama Keiichi Okajima 《Journal of Energy and Power Engineering》 2013年第4期760-766,共7页
关键词 东京电力公司 管辖 二氧化碳排放量 估算 线性规划模型 核能发电 燃煤发电厂 利润最大化
下载PDF
Power control and channel allocation optimization game algorithm with low energy consumption for wireless sensor network 被引量:2
18
作者 郝晓辰 刘金硕 +2 位作者 解力霞 陈白 姚宁 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第8期87-98,共12页
In a wireless sensor network (WSN), the energy of nodes is limited and cannot be charged. Hence, it is necessary to reduce energy consumption. Both the transmission power of nodes and the interference among nodes in... In a wireless sensor network (WSN), the energy of nodes is limited and cannot be charged. Hence, it is necessary to reduce energy consumption. Both the transmission power of nodes and the interference among nodes influence energy consumption. In this paper, we design a power control and channel allocation game model with low energy consumption (PCCAGM). This model contains transmission power, node interference, and residual energy. Besides, the interaction between power and channel is considered. The Nash equilibrium has been proved to exist. Based on this model, a power control and channel allocation optimization algorithm with low energy consumption (PCCAA) is proposed. Theoretical analysis shows that PCCAA can converge to the Pareto Optimal. Simulation results demonstrate that this algorithm can reduce transmission power and interference effectively. Therefore, this algorithm can reduce energy consumption and prolong the network lifetime. 展开更多
关键词 wireless sensor network power control channel allocation energy balance
下载PDF
Impact of Electric Vehicles on a Carbon Constrained Power System—A Post 2020 Case Study 被引量:4
19
作者 Zhebin Sun Kang Li +2 位作者 Zhile Yang Qun Niu Aoife Foley 《Journal of Power and Energy Engineering》 2015年第4期114-122,共9页
Electric vehicles (EVs) offer great potential to move from fossil fuel dependency in transport once some of the technical barriers related to battery reliability and grid integration are resolved. The European Union h... Electric vehicles (EVs) offer great potential to move from fossil fuel dependency in transport once some of the technical barriers related to battery reliability and grid integration are resolved. The European Union has set a target to achieve a 10% reduction in greenhouse gas emissions by 2020 relative to 2005 levels. This target is binding in all the European Union member states. If electric vehicle issues are overcome then the challenge is to use as much renewable energy as possible to achieve this target. In this paper, the impacts of electric vehicle charged in the all-Ireland single wholesale electricity market after the 2020 deadline passes is investigated using a power system dispatch model. For the purpose of this work it is assumed that a 10% electric vehicle target in the Republic of Ireland is not achieved, but instead 8% is reached by 2025 considering the slow market uptake of electric vehicles. Our experimental study shows that the increasing penetration of EVs could contribute to approach the target of the EU and Ireland government on emissions reduction, regardless of different charging scenarios. Furthermore, among various charging scenarios, the off-peak charging is the best approach, contributing 2.07% to the target of 10% reduction of Greenhouse gas emissions by 2025. 展开更多
关键词 CARBON EMISSIONS electric VEHICLES power System PLEXOS energy Forecasting
下载PDF
Development modes analysis of renewable energy power generation in North Africa 被引量:5
20
作者 Liang Zhao Ruoying Yu +3 位作者 Zhe Wang Wei Yang Linan Qu Weidong Chen 《Global Energy Interconnection》 2020年第3期237-246,共10页
North African countries generally have strategic demands for energy transformation and sustainable development.Renewable energy development is important to achieve this goal.Considering three typical types of renewabl... North African countries generally have strategic demands for energy transformation and sustainable development.Renewable energy development is important to achieve this goal.Considering three typical types of renewable energies—wind,photovoltaic(PV),and concentrating solar power(CSP)—an optimal planning model is established to minimize construction costs and power curtailment losses.The levelized cost of electricity is used as an index for assessing economic feasibility.In this study,wind and PV,wind/PV/CSP,and transnational interconnection modes are designed for Morocco,Egypt,and Tunisia.The installed capacities of renewable energy power generation are planned through the time sequence production simulation method for each country.The results show that renewable energy combined with power generation,including the CSP mode,can improve reliability of the power supply and reduce the power curtailment rate.The transnational interconnection mode can help realize mutual benefits of renewable energy power,while the apportionment of electricity prices and trading mechanisms are very important and are related to economic feasibility;thus,this mode is important for the future development of renewable energy in North Africa. 展开更多
关键词 North Africa Renewable energy Wind power generation Solar energy generation Transnational interconnection Optimal planning Levelized cost of electricity
下载PDF
上一页 1 2 193 下一页 到第
使用帮助 返回顶部