[Objective] The aim was to study the effects of water supply and consumption on water saving and drought resistance. [Method] Controlling field experiment was conducted to explore water balance between supply and dema...[Objective] The aim was to study the effects of water supply and consumption on water saving and drought resistance. [Method] Controlling field experiment was conducted to explore water balance between supply and demand in paddy fields in hilly regions in Sichuan Province. [Result] Rainfall in hilly areas was 3 611.10 m3/hm2; water for irrigation was 6 299.25 m3/hm2; evapotranspiration of rice was 6 424.95 m3/hm2; deep leakage was 2 459.55 m3/hm2; overflowing amount was 1 026.00 m3/hm2. In addition, water consumption totaled 8 884.50 m3/hm2 during rice production; water use was 0.99 kg/m3 and use efficiency of irrigated water was 1.40 kg/m3. [Conclusion] Water supply and consumption should be further organized to save water and fight against drought in hilly areas in Sichuan Province.展开更多
In semiarid areas, cereal crops often alocate more biomass to root at the expense of aboveground yield. A pot experiment was conducted to investigate carbon consumption of roots and its impact on grain yield of spring...In semiarid areas, cereal crops often alocate more biomass to root at the expense of aboveground yield. A pot experiment was conducted to investigate carbon consumption of roots and its impact on grain yield of spring wheat (Triticum aestivum L.) as affected by water and phosphorus (P) supply. A factorial design was used with six treatments namely two water regimes (at 80–75% and 50–45% ifeld capacity (FC)) and three P supply rates (P1=0, P2=44 and P3=109 μg P g–1 soil). At shooting and lfowering stages, root respiration and carbon consumption increased with the elevate of P supply rates, regardless of water conditions, which achieved the minimum and maximum at P1 under 50–45% FC and P3 under 80–75% FC, respectively. However, total aboveground biomass and grain yield were higher at P2 under 80–75% FC; and decreased with high P application (P3). The results indicated that rational or low P supply (80–75% of ifeld water capacity and 44 mg P kg–1 soil) should be recommended to improve grain yield by decreasing root carbon consumption in semiarid areas.展开更多
The Hexi Corridor is an important base of agriculture development inNorthwest China. According to recent statistics, there are 65. 94 x 10~8m^3 of water resourcesavailable in the Hexi Corridor. At present, net consump...The Hexi Corridor is an important base of agriculture development inNorthwest China. According to recent statistics, there are 65. 94 x 10~8m^3 of water resourcesavailable in the Hexi Corridor. At present, net consumption in development and utilization is 43. 33x 10~8m^3. Water supply and demand reach a balance on the recent level of production, but loss ofevaporation and evapotranspiration is as much as 25. 69 x 1010~8m^3. So net use efficiency of waterresources is 59% Based on analyzing balance between water and land considering ecologicalenvironment at present, there exists the serious water shortage in the Shiyang River system whereirrigation lands have overloaded. There is a comparative balance between supply and demand of waterresource in the Heihe River system; and the Sule River system has some surplus water to extendirrigation land. Use of agriculture water accounts for 83. 3% and ecological forest and grass for 6.9% . The Hexi Corridor still has a great potential for water saving in agriculture production.Water-saving efficiency of irrigation is about 10% by using such traditional technologies as furrowand border-dike irrigation and small check irrigation, and water-saving with plastic film cover andtechniques of advanced sprinkler and drip/micro irrigation etc. can save more than 60% of irrigatedwater. Incremental irrigation area for water-saving potential in the Hexi Corridor has beenestimated as 56% - 197% to original irrigation area. So the second water sources can be developedfrom water saving agriculture in the Hexi Corridor under Development of the Western Part of China inlarge scale. This potential can be realized step by step through developing the water-savingmeasures, improving the ecological condition of oasis agriculture, and optimizing allocation ofwater resources in three river systems.展开更多
Objective: To evaluate the effects of various degrees of hyperventilation on balance of cerebral oxygensupply and consumption during intravenous general anesthesia with jugular venous oxygen saturation monitoringMetbo...Objective: To evaluate the effects of various degrees of hyperventilation on balance of cerebral oxygensupply and consumption during intravenous general anesthesia with jugular venous oxygen saturation monitoringMetbods: Sixty-six patients with supratentorial tumor undergoing intravenous general anesthesia for brain surgerywere randomly divided into three groups. In group Ⅰ, Ⅱ and Ⅲ, end-tidal pressure of Co2(PETCO2) were maintained at 3. 5, 4. 0 and 4. 5 kPa respectively. Radial arterial blood samples and jugular bulb blood samples weretaken synchronously at 60 min after hyperventilation to measure jugular venous oxygen saturation (SjvO2), cerebral extraction of oxygen (CEO2) and cerebral arteriovenous oxygen content difference (AVDO2) were calculatedResults: In group Ⅰ after hyperventilation, SjvO, and jugular venous oxygen content (CjvO2) were decreasedmarkedly while CEO2 was increased significantly, which was different significantly compared with the baseline andcorresponding value in group Ⅱ and Ⅲ (P<0. 05). After hyperventilation in group, and, SjvO2 CjvO2, CEO2and AVDO, remained unchanged. Conclusion: This study shows that sustained excessive hyperventilation (PETCO23.5 kPa) may account for the less favorable cerebral oxygen supply and consumption balance and maintained PETCO, at 4. 0~4. 5 kPa was optimal hyperventilation for brain surgery anesthesia.展开更多
The paper had analyzed the technology, maintenance and recognition of vertical greening in urban space, and proposed a solution for balance water supply for balconies and streetlights, that is, magnetic auxiliary shal...The paper had analyzed the technology, maintenance and recognition of vertical greening in urban space, and proposed a solution for balance water supply for balconies and streetlights, that is, magnetic auxiliary shallow water level controller, the patent of which had been applied. Magnetic auxiliary shallow water level controller had met water supply of some special parts of urban vertical greening and was sure to accelerate urban vertical greening.展开更多
[Objective] The purpose of this study is to estimate water supply and demand, which can provide a basis for how to allocate rationally water resources in Hotan Oasis. [Method] The water supply and demand in Hotan Oasi...[Objective] The purpose of this study is to estimate water supply and demand, which can provide a basis for how to allocate rationally water resources in Hotan Oasis. [Method] The water supply and demand in Hotan Oasis in the next15 years were calculated according to water-soil balance. [Result] When the runoff of Hotan River is at a probability of 50%(P=50 for short), the total water resource is 50.57×10^8m^3, and there is only 33.13×10^8m^3available for social and economics,but there would be a need of 33.44×10^8and 36.06×10^8m^3, and the water shortage would be 1.31 ×10^8and 2.93 ×10^8m^3in 2020 and 2030 respectively. When P =75,the total water resource is 44.30×10^8m^3, there is only 29.39×10^8m^3water available for social and economics. However, there would be a need of 31.43 ×10^8and33.11×10^8m^3, and the water shortage would be 2.04×10^8and 3.72×10^8m^3in 2020 and 2030, respectively. [Conclusion] The problem of water shortage would be serious over the next 15 years, and the fragile ecosystem would be destroyed dramatically with the large-scale land reclamation against natural laws. Hence, the effective policies and measures should be taken timely to prohibit reclamation and to cope with ongoing water shortage, based on the water supply and demand estimation under the background of climate change.展开更多
Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance o...Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance of water supply and demand in the region was established, and the security of water resource was assessed, from which the results that the effects of unified management of water resources in the Heihe River basin between Gansu Province and Inner Mongolia on regional hydrology are significant with a decrease in water supply diverted from Heihe River and an increase in groundwater extracted. In addition, it was found that the groundwater level has been steadily decreasing due to over pumping and decrease in recharges. In present year (2003), the volume of potential groundwater in the irrigation districts is far small because of the groundwater overdraft; even in the particular regions, there is no availability of groundwater resources for use. By 2003, water supply is not sufficient to meet the water demand in the different irrigation districts, the sustainable development and utilization of water resources are not secured, and the water supply crisis occurs in Pingchuan irrigation district. Achieving water security for the sustainable development of society, agriculture, economy, industry, and livelihoods while maintaining or improving the abilities of the management and planning of water resources, determining of the reasonable percentage between water supply and groundwater utilization and water saving in agricultural irrigation are taken into account. If this does not occur, it is feared that the present performance of water development and planning may further aggravate the problem of scarcities of water resources and further damage the fragile ecological system.展开更多
The annual allocation, inter-annual variation and relation of water diversion and recession are analyzed in Ningxia reach of the Yellow River main stream from 1999 to 2012. Water consumption in Ningxia reach was calcu...The annual allocation, inter-annual variation and relation of water diversion and recession are analyzed in Ningxia reach of the Yellow River main stream from 1999 to 2012. Water consumption in Ningxia reach was calculated by water diversion-recession method and water balance method. The average value of water diversion-recession method is 3.264 billion m3 and annual varia-tion is relatively steady. The result of water balance method is 3.937 billion m3 and annual variation is obvious. It is suggested that strengthen verification of entrances and monitoring of water diversion and recession.展开更多
Water-related ecosystem services is a hot topic in ecological research. Water supply services are crucial to regional water cycles and water quantity balance. The Dongjiang Lake basin is a national priority river basi...Water-related ecosystem services is a hot topic in ecological research. Water supply services are crucial to regional water cycles and water quantity balance. The Dongjiang Lake basin is a national priority river basin in China where ecological compensation pilot programs concerning water resources and water supply services are top priorities for ecosystem service protection. We analyzed spatial and temporal patterns associated with generation and use of water supply services in the Dongjiang Lake basin using the In VEST model, socio-economic data and water resource data. We found that between 1995 and 2010, water yield in the Dongjiang Lake basin and its beneficiary areas increased before declining, varying 9350–12 400 m3 ha-1 y-1; average water yield peaked in 2000. The spatial distribution patterns of water yield during these years are similar, progressively decreasing from upstream to downstream with a remarkable reduction in surrounding areas of city clusters. Average water consumption of the basin and its beneficiary areas ranged from 2900–4450 m3 ha-1 y-1 between 1995 and 2010; the spatial distribution patterns of water consumption during these years are similar, dropping gradually from urban construction land to its surroundings with a stronger gradient between urban and rural areas. More water was consumed on both banks and surroundings of the lake. From 1995 to 2010, water supply fell short of demand for urban construction land and its proximity as well as areas along the lake. Water supply services were able to satisfy needs in other regions. The Changsha-Zhuzhou-Xiangtan city cluster suffers from the most strained water supply.展开更多
文摘[Objective] The aim was to study the effects of water supply and consumption on water saving and drought resistance. [Method] Controlling field experiment was conducted to explore water balance between supply and demand in paddy fields in hilly regions in Sichuan Province. [Result] Rainfall in hilly areas was 3 611.10 m3/hm2; water for irrigation was 6 299.25 m3/hm2; evapotranspiration of rice was 6 424.95 m3/hm2; deep leakage was 2 459.55 m3/hm2; overflowing amount was 1 026.00 m3/hm2. In addition, water consumption totaled 8 884.50 m3/hm2 during rice production; water use was 0.99 kg/m3 and use efficiency of irrigated water was 1.40 kg/m3. [Conclusion] Water supply and consumption should be further organized to save water and fight against drought in hilly areas in Sichuan Province.
基金supported by the National Nature Science Foundation of China (31300328, 31200335, 31470496)the "111" Program from State Administration of Foreign Experts Affairs (SAFEA) & Ministry of Education (MOE), China (2007B051)+1 种基金the Fundamental Research Funds for the Central Universities, China (lzujbky-2012-97, lzujbky-2015-ct02, lzujbky-2016-86)the funding from the State Key Laboratory of Grassland Agro-ecosystem in Lanzhou University, China
文摘In semiarid areas, cereal crops often alocate more biomass to root at the expense of aboveground yield. A pot experiment was conducted to investigate carbon consumption of roots and its impact on grain yield of spring wheat (Triticum aestivum L.) as affected by water and phosphorus (P) supply. A factorial design was used with six treatments namely two water regimes (at 80–75% and 50–45% ifeld capacity (FC)) and three P supply rates (P1=0, P2=44 and P3=109 μg P g–1 soil). At shooting and lfowering stages, root respiration and carbon consumption increased with the elevate of P supply rates, regardless of water conditions, which achieved the minimum and maximum at P1 under 50–45% FC and P3 under 80–75% FC, respectively. However, total aboveground biomass and grain yield were higher at P2 under 80–75% FC; and decreased with high P application (P3). The results indicated that rational or low P supply (80–75% of ifeld water capacity and 44 mg P kg–1 soil) should be recommended to improve grain yield by decreasing root carbon consumption in semiarid areas.
文摘The Hexi Corridor is an important base of agriculture development inNorthwest China. According to recent statistics, there are 65. 94 x 10~8m^3 of water resourcesavailable in the Hexi Corridor. At present, net consumption in development and utilization is 43. 33x 10~8m^3. Water supply and demand reach a balance on the recent level of production, but loss ofevaporation and evapotranspiration is as much as 25. 69 x 1010~8m^3. So net use efficiency of waterresources is 59% Based on analyzing balance between water and land considering ecologicalenvironment at present, there exists the serious water shortage in the Shiyang River system whereirrigation lands have overloaded. There is a comparative balance between supply and demand of waterresource in the Heihe River system; and the Sule River system has some surplus water to extendirrigation land. Use of agriculture water accounts for 83. 3% and ecological forest and grass for 6.9% . The Hexi Corridor still has a great potential for water saving in agriculture production.Water-saving efficiency of irrigation is about 10% by using such traditional technologies as furrowand border-dike irrigation and small check irrigation, and water-saving with plastic film cover andtechniques of advanced sprinkler and drip/micro irrigation etc. can save more than 60% of irrigatedwater. Incremental irrigation area for water-saving potential in the Hexi Corridor has beenestimated as 56% - 197% to original irrigation area. So the second water sources can be developedfrom water saving agriculture in the Hexi Corridor under Development of the Western Part of China inlarge scale. This potential can be realized step by step through developing the water-savingmeasures, improving the ecological condition of oasis agriculture, and optimizing allocation ofwater resources in three river systems.
文摘Objective: To evaluate the effects of various degrees of hyperventilation on balance of cerebral oxygensupply and consumption during intravenous general anesthesia with jugular venous oxygen saturation monitoringMetbods: Sixty-six patients with supratentorial tumor undergoing intravenous general anesthesia for brain surgerywere randomly divided into three groups. In group Ⅰ, Ⅱ and Ⅲ, end-tidal pressure of Co2(PETCO2) were maintained at 3. 5, 4. 0 and 4. 5 kPa respectively. Radial arterial blood samples and jugular bulb blood samples weretaken synchronously at 60 min after hyperventilation to measure jugular venous oxygen saturation (SjvO2), cerebral extraction of oxygen (CEO2) and cerebral arteriovenous oxygen content difference (AVDO2) were calculatedResults: In group Ⅰ after hyperventilation, SjvO, and jugular venous oxygen content (CjvO2) were decreasedmarkedly while CEO2 was increased significantly, which was different significantly compared with the baseline andcorresponding value in group Ⅱ and Ⅲ (P<0. 05). After hyperventilation in group, and, SjvO2 CjvO2, CEO2and AVDO, remained unchanged. Conclusion: This study shows that sustained excessive hyperventilation (PETCO23.5 kPa) may account for the less favorable cerebral oxygen supply and consumption balance and maintained PETCO, at 4. 0~4. 5 kPa was optimal hyperventilation for brain surgery anesthesia.
文摘The paper had analyzed the technology, maintenance and recognition of vertical greening in urban space, and proposed a solution for balance water supply for balconies and streetlights, that is, magnetic auxiliary shallow water level controller, the patent of which had been applied. Magnetic auxiliary shallow water level controller had met water supply of some special parts of urban vertical greening and was sure to accelerate urban vertical greening.
基金Supported by the National Basic Research Program of China(973 Program,2010CB955905)the Fund of Chengde Municipal Finance Bureau(CZ2013004)~~
文摘[Objective] The purpose of this study is to estimate water supply and demand, which can provide a basis for how to allocate rationally water resources in Hotan Oasis. [Method] The water supply and demand in Hotan Oasis in the next15 years were calculated according to water-soil balance. [Result] When the runoff of Hotan River is at a probability of 50%(P=50 for short), the total water resource is 50.57×10^8m^3, and there is only 33.13×10^8m^3available for social and economics,but there would be a need of 33.44×10^8and 36.06×10^8m^3, and the water shortage would be 1.31 ×10^8and 2.93 ×10^8m^3in 2020 and 2030 respectively. When P =75,the total water resource is 44.30×10^8m^3, there is only 29.39×10^8m^3water available for social and economics. However, there would be a need of 31.43 ×10^8and33.11×10^8m^3, and the water shortage would be 2.04×10^8and 3.72×10^8m^3in 2020 and 2030, respectively. [Conclusion] The problem of water shortage would be serious over the next 15 years, and the fragile ecosystem would be destroyed dramatically with the large-scale land reclamation against natural laws. Hence, the effective policies and measures should be taken timely to prohibit reclamation and to cope with ongoing water shortage, based on the water supply and demand estimation under the background of climate change.
基金This work was supported by the Knowledge Innovation Program from the Cold and Add Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences (CACX2003102)the Chinese Academy of Sciences (KZCX 1 - 10-03-01)the National Natural Science Foundation of China (40401012).
文摘Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance of water supply and demand in the region was established, and the security of water resource was assessed, from which the results that the effects of unified management of water resources in the Heihe River basin between Gansu Province and Inner Mongolia on regional hydrology are significant with a decrease in water supply diverted from Heihe River and an increase in groundwater extracted. In addition, it was found that the groundwater level has been steadily decreasing due to over pumping and decrease in recharges. In present year (2003), the volume of potential groundwater in the irrigation districts is far small because of the groundwater overdraft; even in the particular regions, there is no availability of groundwater resources for use. By 2003, water supply is not sufficient to meet the water demand in the different irrigation districts, the sustainable development and utilization of water resources are not secured, and the water supply crisis occurs in Pingchuan irrigation district. Achieving water security for the sustainable development of society, agriculture, economy, industry, and livelihoods while maintaining or improving the abilities of the management and planning of water resources, determining of the reasonable percentage between water supply and groundwater utilization and water saving in agricultural irrigation are taken into account. If this does not occur, it is feared that the present performance of water development and planning may further aggravate the problem of scarcities of water resources and further damage the fragile ecological system.
文摘The annual allocation, inter-annual variation and relation of water diversion and recession are analyzed in Ningxia reach of the Yellow River main stream from 1999 to 2012. Water consumption in Ningxia reach was calculated by water diversion-recession method and water balance method. The average value of water diversion-recession method is 3.264 billion m3 and annual varia-tion is relatively steady. The result of water balance method is 3.937 billion m3 and annual variation is obvious. It is suggested that strengthen verification of entrances and monitoring of water diversion and recession.
基金the National Science and Technology Support Program(2013BAC03B05)National Natural Science Foundation of China(31400411)
文摘Water-related ecosystem services is a hot topic in ecological research. Water supply services are crucial to regional water cycles and water quantity balance. The Dongjiang Lake basin is a national priority river basin in China where ecological compensation pilot programs concerning water resources and water supply services are top priorities for ecosystem service protection. We analyzed spatial and temporal patterns associated with generation and use of water supply services in the Dongjiang Lake basin using the In VEST model, socio-economic data and water resource data. We found that between 1995 and 2010, water yield in the Dongjiang Lake basin and its beneficiary areas increased before declining, varying 9350–12 400 m3 ha-1 y-1; average water yield peaked in 2000. The spatial distribution patterns of water yield during these years are similar, progressively decreasing from upstream to downstream with a remarkable reduction in surrounding areas of city clusters. Average water consumption of the basin and its beneficiary areas ranged from 2900–4450 m3 ha-1 y-1 between 1995 and 2010; the spatial distribution patterns of water consumption during these years are similar, dropping gradually from urban construction land to its surroundings with a stronger gradient between urban and rural areas. More water was consumed on both banks and surroundings of the lake. From 1995 to 2010, water supply fell short of demand for urban construction land and its proximity as well as areas along the lake. Water supply services were able to satisfy needs in other regions. The Changsha-Zhuzhou-Xiangtan city cluster suffers from the most strained water supply.