This study investigated the influence of both shaking duration and number of trees per bale on postharvest needle characteristics such as percentage needle loss, needle retention duration and explored the physiologica...This study investigated the influence of both shaking duration and number of trees per bale on postharvest needle characteristics such as percentage needle loss, needle retention duration and explored the physiological roles of endogenous ethylene and volatile terpene compounds (VTCs). To accomplish these objectives, 25 six-year-old trees were detached and exposed to a range of shaking durations (0 to 60 sec.), and 30 six-year-old detached trees were exposed to baling treatments from 0 to 5 trees. Response variables measured were percent needle loss, needle retention duration, average water use, ethylene and volatile terpene compound evolution. Trees shaken for 60 seconds lost 16% less needle compared to control, which was consistent with the decrease in percent needle loss with increasing shaking duration. Baled trees lost 13% more needles compared to control, but percent needle loss was observed to decrease with increasing number of trees in a bale. These trends corresponded with increasing ethylene and VTC evolutions, where the longer the shaking duration or larger number of trees in a bale, the higher the ethylene and VTC evolutions. One can therefore draw inference that mechanical perturbation as a result of shaking and baling induce biosynthesis and regulation of ethylene and VTC in balsam fir trees in an effort to regulate postharvest needle abscission.展开更多
As today’s society searches for renewable energy sources that could be an alternative to fossil fuels, biomass and biofuels provide a promising solution. Switchgrass is one of feedstocks that can be utilized as a ren...As today’s society searches for renewable energy sources that could be an alternative to fossil fuels, biomass and biofuels provide a promising solution. Switchgrass is one of feedstocks that can be utilized as a renewable energy source. When farming, one of the most important considerations is efficiency. This consists of several factors, including time, fuel use, economic and power efficiencies of equipment. Inefficient field operations could increase harvesting costs and in turn could cause hesitation when a farmer decides to participate in biomass production. This literature review will cover the main elements of biomass and biomass handling relating to determining harvesting efficiency and biomass quality for switchgrass round bales. Specifically, the following sections include past research activities relating to biomass harvesting, biomass bale quality during outdoor storage, logistics models, and data collection methods during biomass harvesting. The objective of this review is to examine status and needs for switchgrass round bale harvesting operations and the expenses that come with it.展开更多
[Objective] The aim was to calculate the safe straw volume using Frank- Kamenetskii Model to provide method for fire protection in forage farm. [Method] Frank-Kamenetskii Model was used to measure Tacr and improved by...[Objective] The aim was to calculate the safe straw volume using Frank- Kamenetskii Model to provide method for fire protection in forage farm. [Method] Frank-Kamenetskii Model was used to measure Tacr and improved by marginal tem- perature which was adjustable. In addition, effects of water content and density of baled straws on Tc were explored using the improved model. [Result] Size of straw bales was the key factor determining whether spontaneous combustion would occur. For baled straws with water at 15.27% and density at 285 kg/m3, Tc was 85-88 ~C and safe diameter of baled straws maximized 8.2 m. In addition, straws should be stacked from south to north (or north to south) to avoid sunshine and certain space should be kept between straw bales for heat dissipation. [Conclusion] The research is of significance for safe management of forage farm.展开更多
The loading ability of straw bale was tested by Electronical Testing Machine. The linear regression equations were proposed between failure density and loading ability, and failure density and compressing energy. Base...The loading ability of straw bale was tested by Electronical Testing Machine. The linear regression equations were proposed between failure density and loading ability, and failure density and compressing energy. Based on an exponent model, the testing coefficients of straw bale were estimated using Levenberg-Marquardt Method. The results of test showed that the relation between failure density and loading ability and compressing energy was linear in the phase of high density. The loading ability of straw bale could meet the building bill.展开更多
The study was conducted on Berbere Forest in Bale Zone of Oromia Regional State, south east of Ethiopia with the objective of determining the structural analysis and natural regeneration status of the forest. Systemat...The study was conducted on Berbere Forest in Bale Zone of Oromia Regional State, south east of Ethiopia with the objective of determining the structural analysis and natural regeneration status of the forest. Systematic sampling method was used to collect vegetation data. Seventy two nest quadrat sizes of 400 m2 (20 m × 20 m) for trees and shrubs were used. Within the main quadrat, two opposite side of each sub-quadrat of 25 m2 (5 m × 5 m) for sapling, 4 m2 (2 m × 2 m) for seedling of woody plants. The diameter and height were measured for all individual trees and shrubs having DBH (Diameter at Breast Height) ≥ 10 cm thick and ≥2 m height by using a diameter tape or caliper and clinometer respectively. For description and analysis of vegetation structure Diameter at Breast Height (DBH), basal area, tree density, height, frequency and important value index were used. Structural analysis of some selected tree species was revealed four different population patterns (bell shaped, inverted J-shaped, irregular and U-shaped). The total basal area of Berbere forest was 87.49 m2/ha, but most of the basal area was contributed by few large sized Moraceae family (Ficus vasta, Ficus ovate and Ficus thonningii) plant species. Analysis of regeneration status of woody plants in the forest showed 37.09% trees/shrubs species exhibited “good”, 19.35% showed “fair”, 6.45% showed “poor” and 25.81% trees/shrubs species were “not regenerating” at all and 11.29% trees/shrubs species were available only in sapling or seedling stage. Studies on the structure and regeneration of the forest indicated that there are species that require urgent conservation measures. Therefore, based on the results of this study, we recommended detail regenerating studies of seed bank in relation to various environmental factors such as soil type and properties.展开更多
The Bale mountains ecoregion in Ethiopia provides a number of benefits for the local communities mainly in terms of water supply,power generation,tourism activity,and irrigation development.Notwithstanding,the ecoregi...The Bale mountains ecoregion in Ethiopia provides a number of benefits for the local communities mainly in terms of water supply,power generation,tourism activity,and irrigation development.Notwithstanding,the ecoregion has been characterized primarily by recurring floods and droughts,as well as crop failure due to a variety of natural and human-activity-driven change factors.As a matter of fact,the purpose of this study would be to examine long-term changes and fluctuation in precipitation(PCP),maximum temperature(T_(max)),and minimum temperature(T_(min))in the Bale mountains ecoregion using ensembles of three climate models with three representative concentration pathways(RCPs)scenarios from the coupled model inter-comparison project phase five(CMIP5)dataset.Statistical downscaling model(SDSM)was applied to project PCP,T_(max),and T_(min)in the forthcoming period considering three RCPs:low emission(RCP2.6),intermediate(RCP4.5),and high emission(RCP8.5).SDSM's performance in capturing historical daily PCP,T_(max),and T_(min)has been validated using standard statistical metrics such as coefficient of determination(R^(2)),Nash Sutcliff efficiency(NSE),and root mean square error(RMSE).SDSM has the potential to generate a statistical transfer function between large-scale variables and local climate,allowing PCP,T_(max),and T_(min) to be downscaled to a point scale for the ecoregion.The magnitude of mean yearly changes in PCP,T_(max),and T_(min) were investigated throughout three thirty-year time slices,corresponding to the 2020s,2050s,and 2080s.The Mann-Kendall non-parametric test was used to analyse trends in PCP,T_(max),and T_(min) from 2011 to 2100.Inter-annual variability in PCP,T_(max),and T_(min) were investigated for the aforementioned period,taking standard deviation into account under each RCP scenarios.The results reveal that mean annual PCP,T_(max),and T_(min) are rising in all three time slices and in all three CMIP5 RCP scenarios as compared to the baseline scenario.Mean annual PCP is projected to increase within the uncertainty range of 6.68% to 17.93%(RCP2.6),7.45% to 21.94%(RCP4.5),and 19.70% to 33.69%(RCP4.5)(RCP8.5).T_(max) increases from 0.04℃ to 0.24℃(RCP2.6),0.05℃ to 0.31℃(RCP4.5),and 0.04℃ to 0.42℃(RCP8.5),whereas T_(min) increases from 0.22℃ to 0.52℃(RCP2.6),0.23℃ to 0.67℃(RCP4.5),and 0.26℃ to 1.14℃(RCP8.5)(RCP8.5).For future projections at the end of the 21^(st) century,the mean annual PCP,T_(max),and T_(min) for all three analysed climate models and RCPs have shown a positive trend.The inter-annual variability of PCP,T_(max),and T_(min) is higher in the RCP8.5 than RCP4.5 and RCP2.6 in all climate models.The findings clearly implied that prior understanding of long-term climate change and variability need to be addressed to plan effective and efficient mitigation strategies,as well as to maintain adequate quantity and quality of water supplies to the communities residing in the ecoregion.展开更多
Loading ability of straw bales was tested by using an Electronical Testing Machine. Linear regression models were proposed to describe the loading ability as a function of failure density and compressing energy. Based...Loading ability of straw bales was tested by using an Electronical Testing Machine. Linear regression models were proposed to describe the loading ability as a function of failure density and compressing energy. Based on an exponent model, the testing compression coefficients of straw bales were estimated by using the Levenberg-Marquardt Method. Results showed that the relation among failure density, loading ability and compressing energy was linear in the phase of high density, Loading ability of straw bales could meet the requirement for building bills .展开更多
Miscanthus is an emerging dedicated energy crop, which can provide excellent yield on marginal lands. However, this crop is more difficult to harvest than many conventional energy crops such as corn stover and switchg...Miscanthus is an emerging dedicated energy crop, which can provide excellent yield on marginal lands. However, this crop is more difficult to harvest than many conventional energy crops such as corn stover and switchgrass due to its tall and rigid stalks. Crop samples for laboratory studies were collected from the field and the effects of roll spacing, roll speed, and crop input of a mechanical conditioning device on the physical conditions of miscanthus were studied in a lab setting. Test results showed that mechanical conditioning is effective to change the physical conditions of miscanthus to make baling possible or easier. Results also showed that the roll spacing had the most significant impact on the physical conditions of miscanthus, shown by a 115% increase in conditioning over a 0.95 cm (75%) reduction in roll spacing. Increased roll spacing and speed were shown to decrease the amount of torque required to condition the miscanthus.展开更多
Background: The adverse effects of mefloquine and other quinoline antimalaria drugs can be severe and long-lasting. We believe that the trigger for these effects may be drug-induced hepatocellular damage that causes, ...Background: The adverse effects of mefloquine and other quinoline antimalaria drugs can be severe and long-lasting. We believe that the trigger for these effects may be drug-induced hepatocellular damage that causes, firstly, a spillage of retinoids into the circulation (and hence a direct toxic effect on the brain and other target organs), and secondly, disruption of the liver-thyroid axis (and hence a pattern of specific bipolar symptoms such as is often seen in thyroid disease). Methods: We sought recently-published lay accounts of adverse effects in users of quinoline antimalaria drugs, to test these lay descriptions against our hypothesis on the likely pathogenesis of these effects. Results: We found six lay accounts that described four different experiences of adverse effects arising from the prophylactic use of quinoline antimalaria drugs. All four travellers were healthy, at the start of travel. Two of the travellers experienced severe psychoses, and one had a mild psychosis. The fourth traveller, a serving US soldier, killed 16 unarmed Afghan civilians. Analysis of these accounts shows that, based on our hypothesis, all four travellers had at least one risk factor (most commonly, concurrent alcohol use), for developing a severe reaction to their quinoline antimalaria drug. Our hypothesis therefore predicted a severe adverse drug reaction in each of these four travellers. We also identified a hitherto unrecognized risk factor for developing a severe reaction to quinoline antimalaria drugs—namely, the concurrent use of anabolic steroids. Conclusions: Lay accounts of drug adverse effects can help initiate or further develop medical hypotheses of their pathogenesis. We advise that the quinoline class of antimalaria drugs should be prescribed cautiously, and that mefloquine should not now be prescribed for malaria prophylaxis, under any circumstances whatsoever. Where persistent adverse effects have resulted from the historical use of quinoline antimalaria drugs, we propose a five-point management strategy that we believe will in most cases cause symptoms to abate rapidly: 1) stop taking the quinoline drug;2) stop alcohol, and stop all other liver-damaging drugs, including anabolic steroids, hormonal contraception, hormone replacement therapy, recreational drugs, antidepressants, anxiolytics and hypnotics;3) maintain good hydration, using non-fluoridated drinking water;4) temporarily eliminate dietary vitamin A;as an additional and optional therapeutic measure, 5) lower the concentration of circulating retinoids through phlebotomy, plasmapheresis or hirudotherapy.展开更多
Digitalization has nowadays raised interest in variable applications of farming.Increase of knowledge level,by means of unique identification,automation and control,farmers gain relevant business profit.This research ...Digitalization has nowadays raised interest in variable applications of farming.Increase of knowledge level,by means of unique identification,automation and control,farmers gain relevant business profit.This research is focused on the utilization of passive radio frequency identification(RFID)technology in silage bale application,both manual and automated level.Challenges arise due to silage conservation,varying environmental and seasonal conditions,different identification environments and RFID operation principle.Further maximum communication signal strength is limited by telecommunication standard regulations(e.g.,ETSI).The applicability of RFID technology with different commercial passive transponders is measured manually in a silage bale of 160 cm in diameter,covering 360 degrees around the bale.In addition,automated field tests are conducted in a real environment,where the data collection system is appended to a tractor and RFID reader antenna in a baler.Manual measurements are conducted as identification distance(meters)and transponder population(number of tags),while automated measurements are based on the number of successfully identified silage bales.Based on the manual measurement results,the most suitable tags for the automated field measurements were chosen,and the applicability to silage bale identification was verified.Field tests showed 100%success,with 151/151 uniquely identified silage bales.Achieved results prove that passive RFID operates well enough in silage bale identification,further enabling the development of digitalization of silage bale life cycle.展开更多
In order to reduce alfalfa losses, the effect of bale density and alfalfa moisture content on the losses of baled alfalfa during the baling and transportation process was determined in this study. Three ranges of mois...In order to reduce alfalfa losses, the effect of bale density and alfalfa moisture content on the losses of baled alfalfa during the baling and transportation process was determined in this study. Three ranges of moisture content including 14%-17%, 17% -20%, and 20%-23% (wb) were considered in this study. Bale densities considered in this research were 110-120, 120-130, 130-140, and 140-150 kg/m3. The study was conducted in the form of a split-plot experimental design with three replications and a small rectangular baler was used to bale the second cut alfalfa. Alfalfa losses were measured in the pickup system and compression chamber of baler and losses were separated to stems and leaves. Alfalfa losses were also determined during the bale transportation process. Results showed that alfalfa moisture content had significant effect on the leaf and stem losses of the baler pickup system and alfalfa losses during the transportation process while; leaf and stem losses of baler compression chamber were not affected by alfalfa moisture content. Results also revealed that the bale density had no significant effect on the leaf and stem losses of the baler pickup system and alfalfa losses during the transportation process but leaf and stem losses of baler compression chamber were significantly affected by the bale density.展开更多
This paper describes the hot-box testing(based on ASTM C1363-11)of seven straw bale wall panels to obtain their thermal conductivity values.All panels were con-structed with stacked bales and cement-lime plaster skins...This paper describes the hot-box testing(based on ASTM C1363-11)of seven straw bale wall panels to obtain their thermal conductivity values.All panels were con-structed with stacked bales and cement-lime plaster skins on each side of the bales.Four panels were made with traditional,2-string field bales of densities ranging from 89.5 kg/m^(3)-131 kg/m^(3) and with the bales on-edge(fibres perpendicular to the heat flow).Three panels were made with manufactured high-density bales(291 kg/m^(3)-372 kg/m^(3)).The fibres of the manufactured bales were randomly oriented.The key conclusion of this paper is that within the experimental error,there is no difference in the thermal conductivity value for panels using normal density bales and manufactured high density bales up to a density of 333 kg/m^(3).However,because of lack of precision of the hot-box,no conclusions can be made on the true thermal conductivity of the high density bale panels.In addition,the panels tested were found to have significant voids between bales,and this is believed to have con-tributed to higher measured thermal conductivity values compared to those reported in the literature for normal density bale panels.Thermal properties may be affected for bales with higher densities than 333 kg/m^(3),therefore further testing is suggested.展开更多
Dwellings in a Mediterranean climate, such as that of Chile’s Central Valley, must provide hygro-thermal comfort both during the cold winters, and the hot days and cool summer nights. Straw, once a material common in...Dwellings in a Mediterranean climate, such as that of Chile’s Central Valley, must provide hygro-thermal comfort both during the cold winters, and the hot days and cool summer nights. Straw, once a material common in Chile’s indigenous and vernacular architecture, could meet these demands when coupled with sufficient thermal mass in the form of earth renders and floor finishes. This article presents measurements of dry bulb temperatures and relative humidity, both in physical test chambers and Chilean straw bale homes. The results of these measurements confirm that straw bale construction could provide hygro-thermal comfort with heating demands 28% less than those of constructions that meet the Chilean thermal building regulations. Straw bale, therefore, could provide a viable solution for comfortable, energy efficient, rural dwellings in Chile’s Central Valley. Whilst over 40 private straw bale projects have been completed in Chile to date, restrictions applying to projects receiving government subsidies prevent this technology being available to those who need it most.展开更多
The search for more sustainable construction methods has renewed interest in straw-bale construction.Rectangular straw bales stacked in a running bond and plastered on the interior and exterior faces have been shown t...The search for more sustainable construction methods has renewed interest in straw-bale construction.Rectangular straw bales stacked in a running bond and plastered on the interior and exterior faces have been shown to have adequate strength to resist typical loads found in one-and two-storey structures.The straw bales provide excellent insulation,while possessing low embodied energy compared to conventional insulation materials.The structural behaviour of a load-bearing plastered straw-bale wall subject to uniform compressive loading has been the focus of a number of studies reported in the literature.However,in a typical building wall,there will be numerous locations(such as around window and door openings)where the load paths produce areas of concentrated stress.The behaviour in these regions cannot necessarily be predicted using tests from uniformly loaded wall assemblies.This paper describes experiments on plastered single bale assemblies subjected to three-point bending.These assemblies develop shear and flexural stresses,and so simulate the stresses that exist around door and window openings in a wall.The specimens were rendered with lime-cement plaster,and were either unreinforced,or contained steel“diamond lath”mesh embedded within the plaster.The specimens were pin-supported at various centre-to-centre distances(L)ranging from 200 mm to 500 mm.The height(H)of all specimens was constant at 330 mm.This gave a range of H/L values of 0.66 to 1.65.Two distinct types of failure were observed.For tests with H/L<1,failure was due to flexural tension cracks in the plaster which propagated through the depth of the plaster skin.For tests with H/L>1,failure was due to crushing of the plaster in compression under one of the loading points.It was shown that models based on simple mechanics were able to adequately predict the assembly strength.In particular,analysing the assemblies with H/L<1 as simple beams,and using the transformed section concept to deal with the straw and steel mesh,was adequate for predicting their strength.The results suggest that current practice for straw bale construction is generally appropriate.To avoid tensile cracking of plaster due to flexure,regions around doors,windows,and other openings should be designed such that H/L>1.In regions where H/L<1,the use of steel reinforcing mesh can increase the plastered bale strength by 30%on average.展开更多
Experimental studies on full-scale straw-bale walls have demonstrated the adequacy of straw-bale wall systems for resisting lateral loads from wind or seismic actions.Critical to the performance of the wall system is ...Experimental studies on full-scale straw-bale walls have demonstrated the adequacy of straw-bale wall systems for resisting lateral loads from wind or seismic actions.Critical to the performance of the wall system is the anchorage of mesh reinforcement to the bottom plate and to the roof bearing assembly or top plate.Reported in this paper are the results of experiments examining mesh strength,anchorage strength,and failure mode for a variety of reinforcement meshes(steel,plastic,and hemp)and anchorage details.Because of the potential for new wood preservative pressure treatments to cause corrosion,stainless steel staples driven pneumatically into pressure-treated sill plates were tested in addition to electro-galvanized staples driven pneumatically into untreated sill plates and a heavier gauge staple driven manually into an untreated sill plate.Recommended anchorage details are identified,considering not only the test results but also the many other factors that must be considered in developing reliable,economical,and constructible details.展开更多
Straw bale construction offers a renewable,sustainable and proven alternative to mainstream building methods;still,little is known about its airflow characteristics.To this end,the intent of this paper is to evaluate ...Straw bale construction offers a renewable,sustainable and proven alternative to mainstream building methods;still,little is known about its airflow characteristics.To this end,the intent of this paper is to evaluate airtightness of fully constructed and plastered straw bale walls as well as individual plain straw bales.The first experiment entailed measuring the influence of straw bale orientation on airflow characteristics with the finding that straw bale considered alone has poor air flow-retarding characteristics and that plaster is the primary air barrier.A second experiment involved thirty plastered straw bale specimens using three different plaster types.From this experiment,a crack grading system was developed and is herein proposed as a tool to evaluate plaster performance as an air barrier.A third experiment validated the crack grade system through application on four fully constructed straw bale walls.Practical use of the crack grading system was demonstrated on a case study straw bale house in Radomlje,Slovenia,where the predicted air tightness results were validated through comparison to results of blower door tests.展开更多
Specific to problems of the existing round bale wrapping machine in China,such as small application scope and failing to satisfy the wrapping demands of round bales of different specifications,a tumbler-type round bal...Specific to problems of the existing round bale wrapping machine in China,such as small application scope and failing to satisfy the wrapping demands of round bales of different specifications,a tumbler-type round bale wrapping machine based on wrapping silage with stretch film was designed.By theoretical analysis and preliminary experiments of the corresponding wrapping process,revolving speed of tumbler,speed ratio between tumbler and carrier rollers,and pre-load force of stretch film were determined as experimental factors,while wrapping time and consumption of stretch film per unit mass of round bale were determined as evaluation indexes.Furthermore,quadratic regression orthogonal rotational combination experimental design was adopted to carry out the wrapping experiment.The regression models were set up,and influencing rules of experimental factors on evaluation indexes were also analyzed.The optimal parameter combination scheme was revolving speed of tumbler of 31-32 r/min,speed ratio between tumbler and carrier rollers of 2.6,and pre-load force of stretch film of 20-22 N.Under such a circumstance,the corresponding wrapping time required was 37.7-38.9 s and consumption of stretch film per unit mass of round bale was 3.21-3.46 kg/t.The predicted values and the measured values of evaluation indexes basically coincided with each other and the relative error fell below 5%,which indicated that both the optimized regression models acquired through the wrapping experiment and the relevant parameter optimization results were reliable.To guarantee the quality of rice straw silage,the round bale should be wrapped by no less than five layers of stretch films through the utilization of the tumbler-type round bale wrapping machine.The study results could be used as references for research and development of the round bale wrapping machine.展开更多
文摘This study investigated the influence of both shaking duration and number of trees per bale on postharvest needle characteristics such as percentage needle loss, needle retention duration and explored the physiological roles of endogenous ethylene and volatile terpene compounds (VTCs). To accomplish these objectives, 25 six-year-old trees were detached and exposed to a range of shaking durations (0 to 60 sec.), and 30 six-year-old detached trees were exposed to baling treatments from 0 to 5 trees. Response variables measured were percent needle loss, needle retention duration, average water use, ethylene and volatile terpene compound evolution. Trees shaken for 60 seconds lost 16% less needle compared to control, which was consistent with the decrease in percent needle loss with increasing shaking duration. Baled trees lost 13% more needles compared to control, but percent needle loss was observed to decrease with increasing number of trees in a bale. These trends corresponded with increasing ethylene and VTC evolutions, where the longer the shaking duration or larger number of trees in a bale, the higher the ethylene and VTC evolutions. One can therefore draw inference that mechanical perturbation as a result of shaking and baling induce biosynthesis and regulation of ethylene and VTC in balsam fir trees in an effort to regulate postharvest needle abscission.
文摘As today’s society searches for renewable energy sources that could be an alternative to fossil fuels, biomass and biofuels provide a promising solution. Switchgrass is one of feedstocks that can be utilized as a renewable energy source. When farming, one of the most important considerations is efficiency. This consists of several factors, including time, fuel use, economic and power efficiencies of equipment. Inefficient field operations could increase harvesting costs and in turn could cause hesitation when a farmer decides to participate in biomass production. This literature review will cover the main elements of biomass and biomass handling relating to determining harvesting efficiency and biomass quality for switchgrass round bales. Specifically, the following sections include past research activities relating to biomass harvesting, biomass bale quality during outdoor storage, logistics models, and data collection methods during biomass harvesting. The objective of this review is to examine status and needs for switchgrass round bale harvesting operations and the expenses that come with it.
基金Supported by Fund for Philosophy&Social Sciences of Jiangsu Provincial Department of Education(2011SJD820013)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Scientific Research Fund of Jiangsu Police Institute(11Y03)~~
文摘[Objective] The aim was to calculate the safe straw volume using Frank- Kamenetskii Model to provide method for fire protection in forage farm. [Method] Frank-Kamenetskii Model was used to measure Tacr and improved by marginal tem- perature which was adjustable. In addition, effects of water content and density of baled straws on Tc were explored using the improved model. [Result] Size of straw bales was the key factor determining whether spontaneous combustion would occur. For baled straws with water at 15.27% and density at 285 kg/m3, Tc was 85-88 ~C and safe diameter of baled straws maximized 8.2 m. In addition, straws should be stacked from south to north (or north to south) to avoid sunshine and certain space should be kept between straw bales for heat dissipation. [Conclusion] The research is of significance for safe management of forage farm.
基金Supported by the Returnee Foundation of Ministry of Education and Project (1054hz023)Supported by the Key Research Foundation of Ministry of Science in Heilongjiang Province
文摘The loading ability of straw bale was tested by Electronical Testing Machine. The linear regression equations were proposed between failure density and loading ability, and failure density and compressing energy. Based on an exponent model, the testing coefficients of straw bale were estimated using Levenberg-Marquardt Method. The results of test showed that the relation between failure density and loading ability and compressing energy was linear in the phase of high density. The loading ability of straw bale could meet the building bill.
文摘The study was conducted on Berbere Forest in Bale Zone of Oromia Regional State, south east of Ethiopia with the objective of determining the structural analysis and natural regeneration status of the forest. Systematic sampling method was used to collect vegetation data. Seventy two nest quadrat sizes of 400 m2 (20 m × 20 m) for trees and shrubs were used. Within the main quadrat, two opposite side of each sub-quadrat of 25 m2 (5 m × 5 m) for sapling, 4 m2 (2 m × 2 m) for seedling of woody plants. The diameter and height were measured for all individual trees and shrubs having DBH (Diameter at Breast Height) ≥ 10 cm thick and ≥2 m height by using a diameter tape or caliper and clinometer respectively. For description and analysis of vegetation structure Diameter at Breast Height (DBH), basal area, tree density, height, frequency and important value index were used. Structural analysis of some selected tree species was revealed four different population patterns (bell shaped, inverted J-shaped, irregular and U-shaped). The total basal area of Berbere forest was 87.49 m2/ha, but most of the basal area was contributed by few large sized Moraceae family (Ficus vasta, Ficus ovate and Ficus thonningii) plant species. Analysis of regeneration status of woody plants in the forest showed 37.09% trees/shrubs species exhibited “good”, 19.35% showed “fair”, 6.45% showed “poor” and 25.81% trees/shrubs species were “not regenerating” at all and 11.29% trees/shrubs species were available only in sapling or seedling stage. Studies on the structure and regeneration of the forest indicated that there are species that require urgent conservation measures. Therefore, based on the results of this study, we recommended detail regenerating studies of seed bank in relation to various environmental factors such as soil type and properties.
文摘The Bale mountains ecoregion in Ethiopia provides a number of benefits for the local communities mainly in terms of water supply,power generation,tourism activity,and irrigation development.Notwithstanding,the ecoregion has been characterized primarily by recurring floods and droughts,as well as crop failure due to a variety of natural and human-activity-driven change factors.As a matter of fact,the purpose of this study would be to examine long-term changes and fluctuation in precipitation(PCP),maximum temperature(T_(max)),and minimum temperature(T_(min))in the Bale mountains ecoregion using ensembles of three climate models with three representative concentration pathways(RCPs)scenarios from the coupled model inter-comparison project phase five(CMIP5)dataset.Statistical downscaling model(SDSM)was applied to project PCP,T_(max),and T_(min)in the forthcoming period considering three RCPs:low emission(RCP2.6),intermediate(RCP4.5),and high emission(RCP8.5).SDSM's performance in capturing historical daily PCP,T_(max),and T_(min)has been validated using standard statistical metrics such as coefficient of determination(R^(2)),Nash Sutcliff efficiency(NSE),and root mean square error(RMSE).SDSM has the potential to generate a statistical transfer function between large-scale variables and local climate,allowing PCP,T_(max),and T_(min) to be downscaled to a point scale for the ecoregion.The magnitude of mean yearly changes in PCP,T_(max),and T_(min) were investigated throughout three thirty-year time slices,corresponding to the 2020s,2050s,and 2080s.The Mann-Kendall non-parametric test was used to analyse trends in PCP,T_(max),and T_(min) from 2011 to 2100.Inter-annual variability in PCP,T_(max),and T_(min) were investigated for the aforementioned period,taking standard deviation into account under each RCP scenarios.The results reveal that mean annual PCP,T_(max),and T_(min) are rising in all three time slices and in all three CMIP5 RCP scenarios as compared to the baseline scenario.Mean annual PCP is projected to increase within the uncertainty range of 6.68% to 17.93%(RCP2.6),7.45% to 21.94%(RCP4.5),and 19.70% to 33.69%(RCP4.5)(RCP8.5).T_(max) increases from 0.04℃ to 0.24℃(RCP2.6),0.05℃ to 0.31℃(RCP4.5),and 0.04℃ to 0.42℃(RCP8.5),whereas T_(min) increases from 0.22℃ to 0.52℃(RCP2.6),0.23℃ to 0.67℃(RCP4.5),and 0.26℃ to 1.14℃(RCP8.5)(RCP8.5).For future projections at the end of the 21^(st) century,the mean annual PCP,T_(max),and T_(min) for all three analysed climate models and RCPs have shown a positive trend.The inter-annual variability of PCP,T_(max),and T_(min) is higher in the RCP8.5 than RCP4.5 and RCP2.6 in all climate models.The findings clearly implied that prior understanding of long-term climate change and variability need to be addressed to plan effective and efficient mitigation strategies,as well as to maintain adequate quantity and quality of water supplies to the communities residing in the ecoregion.
基金Supported by National Natural Science Fund(50675071)Specialized Research Fund for Doctoral Program of Higher Education(20060564009)
文摘Loading ability of straw bales was tested by using an Electronical Testing Machine. Linear regression models were proposed to describe the loading ability as a function of failure density and compressing energy. Based on an exponent model, the testing compression coefficients of straw bales were estimated by using the Levenberg-Marquardt Method. Results showed that the relation among failure density, loading ability and compressing energy was linear in the phase of high density, Loading ability of straw bales could meet the requirement for building bills .
文摘Miscanthus is an emerging dedicated energy crop, which can provide excellent yield on marginal lands. However, this crop is more difficult to harvest than many conventional energy crops such as corn stover and switchgrass due to its tall and rigid stalks. Crop samples for laboratory studies were collected from the field and the effects of roll spacing, roll speed, and crop input of a mechanical conditioning device on the physical conditions of miscanthus were studied in a lab setting. Test results showed that mechanical conditioning is effective to change the physical conditions of miscanthus to make baling possible or easier. Results also showed that the roll spacing had the most significant impact on the physical conditions of miscanthus, shown by a 115% increase in conditioning over a 0.95 cm (75%) reduction in roll spacing. Increased roll spacing and speed were shown to decrease the amount of torque required to condition the miscanthus.
文摘Background: The adverse effects of mefloquine and other quinoline antimalaria drugs can be severe and long-lasting. We believe that the trigger for these effects may be drug-induced hepatocellular damage that causes, firstly, a spillage of retinoids into the circulation (and hence a direct toxic effect on the brain and other target organs), and secondly, disruption of the liver-thyroid axis (and hence a pattern of specific bipolar symptoms such as is often seen in thyroid disease). Methods: We sought recently-published lay accounts of adverse effects in users of quinoline antimalaria drugs, to test these lay descriptions against our hypothesis on the likely pathogenesis of these effects. Results: We found six lay accounts that described four different experiences of adverse effects arising from the prophylactic use of quinoline antimalaria drugs. All four travellers were healthy, at the start of travel. Two of the travellers experienced severe psychoses, and one had a mild psychosis. The fourth traveller, a serving US soldier, killed 16 unarmed Afghan civilians. Analysis of these accounts shows that, based on our hypothesis, all four travellers had at least one risk factor (most commonly, concurrent alcohol use), for developing a severe reaction to their quinoline antimalaria drug. Our hypothesis therefore predicted a severe adverse drug reaction in each of these four travellers. We also identified a hitherto unrecognized risk factor for developing a severe reaction to quinoline antimalaria drugs—namely, the concurrent use of anabolic steroids. Conclusions: Lay accounts of drug adverse effects can help initiate or further develop medical hypotheses of their pathogenesis. We advise that the quinoline class of antimalaria drugs should be prescribed cautiously, and that mefloquine should not now be prescribed for malaria prophylaxis, under any circumstances whatsoever. Where persistent adverse effects have resulted from the historical use of quinoline antimalaria drugs, we propose a five-point management strategy that we believe will in most cases cause symptoms to abate rapidly: 1) stop taking the quinoline drug;2) stop alcohol, and stop all other liver-damaging drugs, including anabolic steroids, hormonal contraception, hormone replacement therapy, recreational drugs, antidepressants, anxiolytics and hypnotics;3) maintain good hydration, using non-fluoridated drinking water;4) temporarily eliminate dietary vitamin A;as an additional and optional therapeutic measure, 5) lower the concentration of circulating retinoids through phlebotomy, plasmapheresis or hirudotherapy.
文摘Digitalization has nowadays raised interest in variable applications of farming.Increase of knowledge level,by means of unique identification,automation and control,farmers gain relevant business profit.This research is focused on the utilization of passive radio frequency identification(RFID)technology in silage bale application,both manual and automated level.Challenges arise due to silage conservation,varying environmental and seasonal conditions,different identification environments and RFID operation principle.Further maximum communication signal strength is limited by telecommunication standard regulations(e.g.,ETSI).The applicability of RFID technology with different commercial passive transponders is measured manually in a silage bale of 160 cm in diameter,covering 360 degrees around the bale.In addition,automated field tests are conducted in a real environment,where the data collection system is appended to a tractor and RFID reader antenna in a baler.Manual measurements are conducted as identification distance(meters)and transponder population(number of tags),while automated measurements are based on the number of successfully identified silage bales.Based on the manual measurement results,the most suitable tags for the automated field measurements were chosen,and the applicability to silage bale identification was verified.Field tests showed 100%success,with 151/151 uniquely identified silage bales.Achieved results prove that passive RFID operates well enough in silage bale identification,further enabling the development of digitalization of silage bale life cycle.
文摘In order to reduce alfalfa losses, the effect of bale density and alfalfa moisture content on the losses of baled alfalfa during the baling and transportation process was determined in this study. Three ranges of moisture content including 14%-17%, 17% -20%, and 20%-23% (wb) were considered in this study. Bale densities considered in this research were 110-120, 120-130, 130-140, and 140-150 kg/m3. The study was conducted in the form of a split-plot experimental design with three replications and a small rectangular baler was used to bale the second cut alfalfa. Alfalfa losses were measured in the pickup system and compression chamber of baler and losses were separated to stems and leaves. Alfalfa losses were also determined during the bale transportation process. Results showed that alfalfa moisture content had significant effect on the leaf and stem losses of the baler pickup system and alfalfa losses during the transportation process while; leaf and stem losses of baler compression chamber were not affected by alfalfa moisture content. Results also revealed that the bale density had no significant effect on the leaf and stem losses of the baler pickup system and alfalfa losses during the transportation process but leaf and stem losses of baler compression chamber were significantly affected by the bale density.
文摘This paper describes the hot-box testing(based on ASTM C1363-11)of seven straw bale wall panels to obtain their thermal conductivity values.All panels were con-structed with stacked bales and cement-lime plaster skins on each side of the bales.Four panels were made with traditional,2-string field bales of densities ranging from 89.5 kg/m^(3)-131 kg/m^(3) and with the bales on-edge(fibres perpendicular to the heat flow).Three panels were made with manufactured high-density bales(291 kg/m^(3)-372 kg/m^(3)).The fibres of the manufactured bales were randomly oriented.The key conclusion of this paper is that within the experimental error,there is no difference in the thermal conductivity value for panels using normal density bales and manufactured high density bales up to a density of 333 kg/m^(3).However,because of lack of precision of the hot-box,no conclusions can be made on the true thermal conductivity of the high density bale panels.In addition,the panels tested were found to have significant voids between bales,and this is believed to have con-tributed to higher measured thermal conductivity values compared to those reported in the literature for normal density bale panels.Thermal properties may be affected for bales with higher densities than 333 kg/m^(3),therefore further testing is suggested.
文摘Dwellings in a Mediterranean climate, such as that of Chile’s Central Valley, must provide hygro-thermal comfort both during the cold winters, and the hot days and cool summer nights. Straw, once a material common in Chile’s indigenous and vernacular architecture, could meet these demands when coupled with sufficient thermal mass in the form of earth renders and floor finishes. This article presents measurements of dry bulb temperatures and relative humidity, both in physical test chambers and Chilean straw bale homes. The results of these measurements confirm that straw bale construction could provide hygro-thermal comfort with heating demands 28% less than those of constructions that meet the Chilean thermal building regulations. Straw bale, therefore, could provide a viable solution for comfortable, energy efficient, rural dwellings in Chile’s Central Valley. Whilst over 40 private straw bale projects have been completed in Chile to date, restrictions applying to projects receiving government subsidies prevent this technology being available to those who need it most.
文摘The search for more sustainable construction methods has renewed interest in straw-bale construction.Rectangular straw bales stacked in a running bond and plastered on the interior and exterior faces have been shown to have adequate strength to resist typical loads found in one-and two-storey structures.The straw bales provide excellent insulation,while possessing low embodied energy compared to conventional insulation materials.The structural behaviour of a load-bearing plastered straw-bale wall subject to uniform compressive loading has been the focus of a number of studies reported in the literature.However,in a typical building wall,there will be numerous locations(such as around window and door openings)where the load paths produce areas of concentrated stress.The behaviour in these regions cannot necessarily be predicted using tests from uniformly loaded wall assemblies.This paper describes experiments on plastered single bale assemblies subjected to three-point bending.These assemblies develop shear and flexural stresses,and so simulate the stresses that exist around door and window openings in a wall.The specimens were rendered with lime-cement plaster,and were either unreinforced,or contained steel“diamond lath”mesh embedded within the plaster.The specimens were pin-supported at various centre-to-centre distances(L)ranging from 200 mm to 500 mm.The height(H)of all specimens was constant at 330 mm.This gave a range of H/L values of 0.66 to 1.65.Two distinct types of failure were observed.For tests with H/L<1,failure was due to flexural tension cracks in the plaster which propagated through the depth of the plaster skin.For tests with H/L>1,failure was due to crushing of the plaster in compression under one of the loading points.It was shown that models based on simple mechanics were able to adequately predict the assembly strength.In particular,analysing the assemblies with H/L<1 as simple beams,and using the transformed section concept to deal with the straw and steel mesh,was adequate for predicting their strength.The results suggest that current practice for straw bale construction is generally appropriate.To avoid tensile cracking of plaster due to flexure,regions around doors,windows,and other openings should be designed such that H/L>1.In regions where H/L<1,the use of steel reinforcing mesh can increase the plastered bale strength by 30%on average.
文摘Experimental studies on full-scale straw-bale walls have demonstrated the adequacy of straw-bale wall systems for resisting lateral loads from wind or seismic actions.Critical to the performance of the wall system is the anchorage of mesh reinforcement to the bottom plate and to the roof bearing assembly or top plate.Reported in this paper are the results of experiments examining mesh strength,anchorage strength,and failure mode for a variety of reinforcement meshes(steel,plastic,and hemp)and anchorage details.Because of the potential for new wood preservative pressure treatments to cause corrosion,stainless steel staples driven pneumatically into pressure-treated sill plates were tested in addition to electro-galvanized staples driven pneumatically into untreated sill plates and a heavier gauge staple driven manually into an untreated sill plate.Recommended anchorage details are identified,considering not only the test results but also the many other factors that must be considered in developing reliable,economical,and constructible details.
基金supported in part by the Slovene Research Agency,No.252256-1/07the Slovene Human Resources Development and Scholarship Fund,No.11012-47/2012.
文摘Straw bale construction offers a renewable,sustainable and proven alternative to mainstream building methods;still,little is known about its airflow characteristics.To this end,the intent of this paper is to evaluate airtightness of fully constructed and plastered straw bale walls as well as individual plain straw bales.The first experiment entailed measuring the influence of straw bale orientation on airflow characteristics with the finding that straw bale considered alone has poor air flow-retarding characteristics and that plaster is the primary air barrier.A second experiment involved thirty plastered straw bale specimens using three different plaster types.From this experiment,a crack grading system was developed and is herein proposed as a tool to evaluate plaster performance as an air barrier.A third experiment validated the crack grade system through application on four fully constructed straw bale walls.Practical use of the crack grading system was demonstrated on a case study straw bale house in Radomlje,Slovenia,where the predicted air tightness results were validated through comparison to results of blower door tests.
基金The authors acknowledge that this work was financially supported by the National Natural Science Foundation of China(Grant No.51405076)the 13th Five Years Key Programs for Science and Technology Development of China(Grant No.2016YFD0701300).
文摘Specific to problems of the existing round bale wrapping machine in China,such as small application scope and failing to satisfy the wrapping demands of round bales of different specifications,a tumbler-type round bale wrapping machine based on wrapping silage with stretch film was designed.By theoretical analysis and preliminary experiments of the corresponding wrapping process,revolving speed of tumbler,speed ratio between tumbler and carrier rollers,and pre-load force of stretch film were determined as experimental factors,while wrapping time and consumption of stretch film per unit mass of round bale were determined as evaluation indexes.Furthermore,quadratic regression orthogonal rotational combination experimental design was adopted to carry out the wrapping experiment.The regression models were set up,and influencing rules of experimental factors on evaluation indexes were also analyzed.The optimal parameter combination scheme was revolving speed of tumbler of 31-32 r/min,speed ratio between tumbler and carrier rollers of 2.6,and pre-load force of stretch film of 20-22 N.Under such a circumstance,the corresponding wrapping time required was 37.7-38.9 s and consumption of stretch film per unit mass of round bale was 3.21-3.46 kg/t.The predicted values and the measured values of evaluation indexes basically coincided with each other and the relative error fell below 5%,which indicated that both the optimized regression models acquired through the wrapping experiment and the relevant parameter optimization results were reliable.To guarantee the quality of rice straw silage,the round bale should be wrapped by no less than five layers of stretch films through the utilization of the tumbler-type round bale wrapping machine.The study results could be used as references for research and development of the round bale wrapping machine.