To minimize the excessive vibration and prolong the fatigue life of the offshore wind turbine systems, it is of value to control the vibration that is induced within the structure by implementing certain kinds of damp...To minimize the excessive vibration and prolong the fatigue life of the offshore wind turbine systems, it is of value to control the vibration that is induced within the structure by implementing certain kinds of dampers. In this paper, a ball vibration absorber (BVA) is experimentally investigated through a series of shake table tests on a 1/13 scaled wind turbine model. The reductions in top displacement, top acceleration, bottom stress and platform stress of the wind turbine tower system subjected to earthquakes and equivalent wind-wave loads, respectively, with a ball absorber are examined. Cases of the tower with rotating blades are also investigated to validate the efficacy of this damper in mitigating the vibration of an operating wind turbine. The experimental results indicate that the dynamic performance of the tested wind turbine model with a ball absorber is significantly improved compared with that of the uncontrolled structure in terms of the peak response reduction.展开更多
In this paper, we present a vision guided robotic ball-beam balancing control system, consisting of a robot manipulator (actuator), a ball-beam system (plant) and a machine vision system (feedback). The machine vision...In this paper, we present a vision guided robotic ball-beam balancing control system, consisting of a robot manipulator (actuator), a ball-beam system (plant) and a machine vision system (feedback). The machine vision system feedbacks real-time beam angle and ball position data at a speed of 50 frames per second. Based on feedback data, the end-effector of a robot manipulator is driven to control the ball position by maneuvering of the inclination angle of the ball-beam system. The overall control system is implemented with two FPGA chips, one for machine vision processing, and one for robot joints servo PID controllers as well as ball position PD controller. Experiments are performed on a 5-axes robot manipulator to validate the proposed ball beam balancing control system.展开更多
文摘To minimize the excessive vibration and prolong the fatigue life of the offshore wind turbine systems, it is of value to control the vibration that is induced within the structure by implementing certain kinds of dampers. In this paper, a ball vibration absorber (BVA) is experimentally investigated through a series of shake table tests on a 1/13 scaled wind turbine model. The reductions in top displacement, top acceleration, bottom stress and platform stress of the wind turbine tower system subjected to earthquakes and equivalent wind-wave loads, respectively, with a ball absorber are examined. Cases of the tower with rotating blades are also investigated to validate the efficacy of this damper in mitigating the vibration of an operating wind turbine. The experimental results indicate that the dynamic performance of the tested wind turbine model with a ball absorber is significantly improved compared with that of the uncontrolled structure in terms of the peak response reduction.
文摘In this paper, we present a vision guided robotic ball-beam balancing control system, consisting of a robot manipulator (actuator), a ball-beam system (plant) and a machine vision system (feedback). The machine vision system feedbacks real-time beam angle and ball position data at a speed of 50 frames per second. Based on feedback data, the end-effector of a robot manipulator is driven to control the ball position by maneuvering of the inclination angle of the ball-beam system. The overall control system is implemented with two FPGA chips, one for machine vision processing, and one for robot joints servo PID controllers as well as ball position PD controller. Experiments are performed on a 5-axes robot manipulator to validate the proposed ball beam balancing control system.