期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of ball milling time on the microstructure and compressive properties of the Fe–Mn–Al porous steel
1
作者 Lingzhi Xie Zhigang Xu +4 位作者 Yunzhe Qi Jinrong Liang Peng He Qiang Shen Chuanbin Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期917-929,共13页
In the present work,Fe–Mn–Al–C powder mixtures were manufactured by elemental powders with different ball milling time,and the porous high-Mn and high-Al steel was fabricated by powder sintering.The results indicat... In the present work,Fe–Mn–Al–C powder mixtures were manufactured by elemental powders with different ball milling time,and the porous high-Mn and high-Al steel was fabricated by powder sintering.The results indicated that the powder size significantly decreased,and the morphology of the Fe powder tended to be increasingly flat as the milling time increased.However,the prolonged milling duration had limited impact on the phase transition of the powder mixture.The main phases of all the samples sintered at 640℃ were α-Fe,α-Mn and Al,and a small amount of Fe2Al5 and Al8Mn5.When the sintering temperature increased to 1200℃,the phase composition was mainly comprised of γ-Fe and α-Fe.The weight loss fraction of the sintered sample decreased with milling time,i.e.,8.3wt% after 20 h milling compared to15.3wt% for 10 h.The Mn depletion region(MDR) for the 10,15,and 20 h milled samples was about 780,600,and 370 μm,respectively.The total porosity of samples sintered at 640℃ decreased from ~46.6vol% for the 10 h milled powder to ~44.2vol% for 20 h milled powder.After sintering at 1200℃,the total porosity of sintered samples prepared by 10 and 20 h milled powder was ~58.3vol% and ~51.3vol%,respectively.The compressive strength and ductility of the 1200℃ sintered porous steel increased as the milling time increased. 展开更多
关键词 powder metallurgy porous steel ball milling time microstructure evolution compressive properties
下载PDF
High-performance martensitic stainless steel nanocomposite powder for direct energy deposition prepared by ball milling
2
作者 Zhen Wang Shu-Rong Xu +7 位作者 Qing-Xuan Sui Jiang Wang Bo Liu Hao Wen Tian-Yi Xiao Quan Yuan Feng-Jun Zhao Jun Liu 《Rare Metals》 SCIE EI CAS CSCD 2023年第7期2419-2432,共14页
Direct energy deposition(DED)has great potential for the production of stainless steel matrix nanocomposite parts.However,the propensity of nanoparticle agglomeration leads to the difficulty in realizing homogenous di... Direct energy deposition(DED)has great potential for the production of stainless steel matrix nanocomposite parts.However,the propensity of nanoparticle agglomeration leads to the difficulty in realizing homogenous dispersion of nanoparticles in the matrix.In this study,a series of agglomeration-free nanoWC-Co-reinforced 420 stainless steel matrix nanocomposite powders with high flowability were prepared by ball milling under the optimal parameters.The effect of ball milling time on the properties of the composite powders was investigated.Excellent powder properties ensure the DED processing performance.Furthermore,the corresponding composites were fabricated by DED,and the effects of nano-WC-Co content on the properties of the composites were comprehensively investigated.The contact angles between the single pass cladding layer and the substrate change with increasing nano-WC-Co content(decrease from 127.38°to 113.07°).The different contact angles will significantly influence the quality of the multipass cladding layer.Furthermore,the addition of nanoWC-Co leads not only to further grain refinement but also to more pronounced isotropy of the micros tructure.With the increase in nano-WC-Co content,the corrosion resistance is significantly improved(62.28%lower corrosion current for 420-15 wt%nano-WC-Co than for 420). 展开更多
关键词 Steel matrix composites Direct energy deposition(DED) ball milling time Contact angle MICROSTRUCTURE Mechanical property
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部