Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model ...Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model with high dimensional frequency spectra of these signals. This paper aims to develop a selective ensemble modeling approach based on nonlinear latent frequency spectral feature extraction for accurate measurement of material to ball volume ratio. Latent features are first extracted from different vibrations and acoustic spectral segments by kernel partial least squares. Algorithms of bootstrap and least squares support vector machines are employed to produce candidate sub-models using these latent features as inputs. Ensemble sub-models are selected based on genetic algorithm optimization toolbox. Partial least squares regression is used to combine these sub-models to eliminate collinearity among their prediction outputs. Results indicate that the proposed modeling approach has better prediction performance than previous ones.展开更多
Ordinal regression is one of the most important tasks of relation learning, and several techniques based on support vector machines (SVMs) have also been proposed for tackling it, but the scalability aspect of these...Ordinal regression is one of the most important tasks of relation learning, and several techniques based on support vector machines (SVMs) have also been proposed for tackling it, but the scalability aspect of these approaches to handle large datasets still needs much of exploration. In this paper, we will extend the recent proposed algorithm Core Vector Machine (CVM) to the ordinal-class data, and propose a new algorithm named as Ordinal-Class Core Vector Machine (OCVM). Similar with CVM, its asymptotic time complexity is linear with the number of training samples, while the space complexity is independent with the number of training samples. We also give some analysis for OCVM, which mainly includes two parts, the first one shows that OCVM can guarantee that the biases are unique and properly ordered under some situation; the second one illustrates the approximate convergence of the solution from the viewpoints of objective function and KKT conditions. Experiments on several synthetic and real world datasets demonstrate that OCVM scales well with the size of the dataset and can achieve comparable generalization performance with existing SVM implementations.展开更多
为提高多变量、非线性和强耦合系统的动态特性和解耦能力,解决逆模型辨识问题,讨论了基于最小二乘支持向量机(least squares support vector machines,LS-SVM)的多变量逆系统解耦控制方法。通过分析LS-SVM的函数拟合特性,离线建立被控...为提高多变量、非线性和强耦合系统的动态特性和解耦能力,解决逆模型辨识问题,讨论了基于最小二乘支持向量机(least squares support vector machines,LS-SVM)的多变量逆系统解耦控制方法。通过分析LS-SVM的函数拟合特性,离线建立被控对象的非线性逆模型,将得到的逆模型直接串接在原对象之前,原系统被解耦成多个独立的单变量伪线性子系统。为克服直接逆模型的建模误差,提高系统鲁棒稳定性,提出了复合控制方法,其中直接逆模型作为前馈控制器,而用PID控制器作为反馈控制器。文中还分析了球磨机控制系统的特点,并进行了仿真控制研究,仿真结果表明该复合控制方法不依赖于系统的精确数学模型,且解耦能力强、鲁棒稳定性好、跟踪精度高。展开更多
针对电力信息网络的安全态势精确判断问题,提出一种基于机器学习的安全态势感知方法,并将其应用于实际现场环境。该方法将安全态势感知抽象为分类问题,将实际现场监测设备的记录做为数据源输入到分类器以得到感知结果。基于球向量机设...针对电力信息网络的安全态势精确判断问题,提出一种基于机器学习的安全态势感知方法,并将其应用于实际现场环境。该方法将安全态势感知抽象为分类问题,将实际现场监测设备的记录做为数据源输入到分类器以得到感知结果。基于球向量机设计分类器,并利用量子遗传算法搜索球向量机最优训练参数以提高分类精度。基于KDD Cup 99数据集的实验和系统的实际运行情况表明,该方法在态势感知精度方面优于传统方法。展开更多
许多核分类方法的决策函数可以表示为支持向量的组合,如SVM,而支持向量含有非常重要的隐私信息,因此,在分类决策时可能会暴露此类信息,同时分类速度受限于支持向量的个数,如SVM的分类复杂度为O(|SVs|).为解决上述两个问题,本文基于最小...许多核分类方法的决策函数可以表示为支持向量的组合,如SVM,而支持向量含有非常重要的隐私信息,因此,在分类决策时可能会暴露此类信息,同时分类速度受限于支持向量的个数,如SVM的分类复杂度为O(|SVs|).为解决上述两个问题,本文基于最小包含球球心在原始空间中的代理原像,提出了一种隐藏支持向量信息并能快速实现分类的SVM方法,称为隐私保护的快速SVM分类方法(Fast Classification Approach of SVM with Privacy Preservation,FCA-SVMWPP).同时提供了两种求解代理球心原像的方法,分别称为QP解法和直接解法.UCI和PIE人脸数据集的实验结果表明,本文方法可解决上述两个问题并具有较好的效果.展开更多
基金Supported partially by the Post Doctoral Natural Science Foundation of China(2013M532118,2015T81082)the National Natural Science Foundation of China(61573364,61273177,61503066)+2 种基金the State Key Laboratory of Synthetical Automation for Process Industriesthe National High Technology Research and Development Program of China(2015AA043802)the Scientific Research Fund of Liaoning Provincial Education Department(L2013272)
文摘Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model with high dimensional frequency spectra of these signals. This paper aims to develop a selective ensemble modeling approach based on nonlinear latent frequency spectral feature extraction for accurate measurement of material to ball volume ratio. Latent features are first extracted from different vibrations and acoustic spectral segments by kernel partial least squares. Algorithms of bootstrap and least squares support vector machines are employed to produce candidate sub-models using these latent features as inputs. Ensemble sub-models are selected based on genetic algorithm optimization toolbox. Partial least squares regression is used to combine these sub-models to eliminate collinearity among their prediction outputs. Results indicate that the proposed modeling approach has better prediction performance than previous ones.
基金supported by the National High-Tech Research and Development 863 Program of China under Grant No. 2006AA12A106
文摘Ordinal regression is one of the most important tasks of relation learning, and several techniques based on support vector machines (SVMs) have also been proposed for tackling it, but the scalability aspect of these approaches to handle large datasets still needs much of exploration. In this paper, we will extend the recent proposed algorithm Core Vector Machine (CVM) to the ordinal-class data, and propose a new algorithm named as Ordinal-Class Core Vector Machine (OCVM). Similar with CVM, its asymptotic time complexity is linear with the number of training samples, while the space complexity is independent with the number of training samples. We also give some analysis for OCVM, which mainly includes two parts, the first one shows that OCVM can guarantee that the biases are unique and properly ordered under some situation; the second one illustrates the approximate convergence of the solution from the viewpoints of objective function and KKT conditions. Experiments on several synthetic and real world datasets demonstrate that OCVM scales well with the size of the dataset and can achieve comparable generalization performance with existing SVM implementations.
文摘为提高多变量、非线性和强耦合系统的动态特性和解耦能力,解决逆模型辨识问题,讨论了基于最小二乘支持向量机(least squares support vector machines,LS-SVM)的多变量逆系统解耦控制方法。通过分析LS-SVM的函数拟合特性,离线建立被控对象的非线性逆模型,将得到的逆模型直接串接在原对象之前,原系统被解耦成多个独立的单变量伪线性子系统。为克服直接逆模型的建模误差,提高系统鲁棒稳定性,提出了复合控制方法,其中直接逆模型作为前馈控制器,而用PID控制器作为反馈控制器。文中还分析了球磨机控制系统的特点,并进行了仿真控制研究,仿真结果表明该复合控制方法不依赖于系统的精确数学模型,且解耦能力强、鲁棒稳定性好、跟踪精度高。
文摘针对电力信息网络的安全态势精确判断问题,提出一种基于机器学习的安全态势感知方法,并将其应用于实际现场环境。该方法将安全态势感知抽象为分类问题,将实际现场监测设备的记录做为数据源输入到分类器以得到感知结果。基于球向量机设计分类器,并利用量子遗传算法搜索球向量机最优训练参数以提高分类精度。基于KDD Cup 99数据集的实验和系统的实际运行情况表明,该方法在态势感知精度方面优于传统方法。
文摘许多核分类方法的决策函数可以表示为支持向量的组合,如SVM,而支持向量含有非常重要的隐私信息,因此,在分类决策时可能会暴露此类信息,同时分类速度受限于支持向量的个数,如SVM的分类复杂度为O(|SVs|).为解决上述两个问题,本文基于最小包含球球心在原始空间中的代理原像,提出了一种隐藏支持向量信息并能快速实现分类的SVM方法,称为隐私保护的快速SVM分类方法(Fast Classification Approach of SVM with Privacy Preservation,FCA-SVMWPP).同时提供了两种求解代理球心原像的方法,分别称为QP解法和直接解法.UCI和PIE人脸数据集的实验结果表明,本文方法可解决上述两个问题并具有较好的效果.