Novelthree-dimensionalstring and ball-like titanium dioxide/reduced graphene oxide, TiO_2/rGO(STG) composites were prepared using a one-step hydrolysis process followed by a low-temperature hydrothermaltreatment. The ...Novelthree-dimensionalstring and ball-like titanium dioxide/reduced graphene oxide, TiO_2/rGO(STG) composites were prepared using a one-step hydrolysis process followed by a low-temperature hydrothermaltreatment. The STG composites exhibited excellent photo-catalytic degradation performance for methylene blue owing to a good synergistic effect between TiO_2 and rGO. The STG composites with 1.0 wt% of rGO loading exhibited the highest removalrate of 86.0% for methylene blue and its reaction rate constant(5.27 × 10^(-3) min^(-1)) was much higher than those of pure string and ball-like TiO_2(ST). In addition, the STG composites also showed an outstanding capability for the photo-catalysis degradation of other cationic dyes. In addition, a possible photo-catalytic degradation mechanism for the STG composite was postulated, in which~?O_2^- and~·OH were the main oxidizing groups. This work of fers new insights into a better design and preparation of novelcomposite materials for the removalof organic dyes.展开更多
基金supported by the National High Technology Research and Development Program of China ("863" Program, No. 2012AA063504)the National Natural Science Foundation of China (Nos. 21276193, 215111300020, 201405008, and U1407116)the Natural Science Foundation of Tianjin, China (No. 13JCZDJC35600)
文摘Novelthree-dimensionalstring and ball-like titanium dioxide/reduced graphene oxide, TiO_2/rGO(STG) composites were prepared using a one-step hydrolysis process followed by a low-temperature hydrothermaltreatment. The STG composites exhibited excellent photo-catalytic degradation performance for methylene blue owing to a good synergistic effect between TiO_2 and rGO. The STG composites with 1.0 wt% of rGO loading exhibited the highest removalrate of 86.0% for methylene blue and its reaction rate constant(5.27 × 10^(-3) min^(-1)) was much higher than those of pure string and ball-like TiO_2(ST). In addition, the STG composites also showed an outstanding capability for the photo-catalysis degradation of other cationic dyes. In addition, a possible photo-catalytic degradation mechanism for the STG composite was postulated, in which~?O_2^- and~·OH were the main oxidizing groups. This work of fers new insights into a better design and preparation of novelcomposite materials for the removalof organic dyes.