In order to solve the problems of environment pollution and high cost in traditional process of bismuth subcarbonate preparation, a new process using ball-milling transformation method from NH4HCO3 and Bi2O3 was propo...In order to solve the problems of environment pollution and high cost in traditional process of bismuth subcarbonate preparation, a new process using ball-milling transformation method from NH4HCO3 and Bi2O3 was proposed. Additionally, the kinetics of bismuth subcarbonate preparation was studied. Effects of reaction temperature, particle size of bismuth oxide, solid-to-liquid ratio and concentrations of ammonium bicarbonate on the conversion rate of bismuth oxide were studied. The results indicate that the conversion rate of bismuth oxide significantly increased under the conditions of higher temperature, smaller particle size, higher concentration of ammonium bicarbonate and smaller solid-to-liquid ratio. The XRD and ICP-AES analyses show that the purity of product is high. The reaction kinetics with activation energy of 9.783 kJ/mol was analyzed by shrinking core model, and the whole transformation process is controlled by solid product layer diffusion. A semi-empirical kinetics equation was obtained to describe the conversion process.展开更多
To deal with the growing electromagnetic hazards,herein a Co@CuFe_(2)O_(4)absorbing agent with excellent impedance matching at thin thickness was obtained via an innovative route of ball-milling assisted chemical prec...To deal with the growing electromagnetic hazards,herein a Co@CuFe_(2)O_(4)absorbing agent with excellent impedance matching at thin thickness was obtained via an innovative route of ball-milling assisted chemical precipitation and annealing.The as-prepared composite possesses excellent interface polarization ability due to sufficient contact between CuFe_(2)O_(4)NPs and flat Co,and this compressed Co lamella can also provide sufficient eddy current loss.Moreover,the dipole polarization,electron hopping/conduction,and structural scattering also contribute to the broadband microwave absorption of the composite.Thus,the minimum microwave reflection loss achieves-35.56 d B at12.93 GHz for 1.8 mm thickness,and the broadest efficient absorption bandwidth can reach 6.74 GHz for a thinner thickness of 1.72 mm.The preparation method reported here can be referenced as a new-type route to manufacture electromagnetic absorbers with outstanding performance.展开更多
The Ni-Al2O3 catalyst was prepared by the mechanochemical method in combination with a planetary ballmilling machine.Effect of milling time on the crystal structure,the reduction characteristics and the catalytic perf...The Ni-Al2O3 catalyst was prepared by the mechanochemical method in combination with a planetary ballmilling machine.Effect of milling time on the crystal structure,the reduction characteristics and the catalytic performance of Ni-Al2O3 catalyst for hydrogenation of 1,4-butynediol to produce 1,4-butenediol were investigated.The catalysts were characterized by PSD,EDX,XRD,H2-TPR,BET,TEM,and NH3-TPD methods.Results showed that the MCt2.5 catalyst treated at a ball milling time of 2.5 h could form a smallest particle size of 191.0 nm.The evaluation experiments revealed that the activity of the prepared catalyst increased at first and then reached a constant value with the extension of ballmilling time.The BYD conversion,BED selectivity and yield on the MCt2.5 catalyst reached 35.63%,33.48%and 32.46%,respectively,which were higher than those obtained by other samples.The excellent performance of MCt2.5 sample is mainly related to the following three reasons from characterization results.Firstly,it has a smallest particle size of 191.0 nm;and then,the surface acidity(in terms of strong acids)of the catalyst was weaker than other catalysts;and eventually,the loading amount(23.84%)of the active component Ni exceeded the theoretical value(20%).展开更多
Effects of ball-milling parameter on structures and properties of sintered Mg-l.5Zr (mass fraction, %) alloy were researched by metallographic analysis, mechanical properties tests and DMA technology. The results in...Effects of ball-milling parameter on structures and properties of sintered Mg-l.5Zr (mass fraction, %) alloy were researched by metallographic analysis, mechanical properties tests and DMA technology. The results indicate that with 310 r/min rotation speed, the microstructure of the sintered alloy is greatly refined, and Zr-phase distributes uniformly. The micro-hardness, bending strength and damping capacities are the greatest under 310 r/min rotation speed. The damping peak of sintered Mg-l.5Zr alloy increases with increasing frequency under the testing conditions. The relaxation time meets the Arrhenius relationship, and shows the characteristics of relaxation damping.展开更多
Cellulose is a linear polymer consisting of D-anhydroglucose units joined by β-1,4-glycosidic linkages. The densely packed cellulose molecular chain forms crystalline cellulose through strong hydrogen bonding. Owing ...Cellulose is a linear polymer consisting of D-anhydroglucose units joined by β-1,4-glycosidic linkages. The densely packed cellulose molecular chain forms crystalline cellulose through strong hydrogen bonding. Owing to its chemical tunability and excellent mechanical resistance, nanocellulose is widely used in everyday life and the industrial sector. In this work, cellulose materials were nanoprocessed by mechanical ball-milling(1) in polar solvents(N,N-dimethylformamide or dimethyl sulfoxide) with esterification or(2) in hydrophobic agents(polydimethylsiloxane or polytetrafluoroethylene) with different molecular weights. Cellulose nanofibers and nanosheets with different hydrophilic and hydrophobic properties were obtained, and the mechanism of cellulose disintegration along a crystallographic plane induced by mechanical force and the polarity condition were discussed. This work affords a new way to manipulate the morphology and properties of nanocellulose.展开更多
A new approach of ball-milled Mg_2Ni in tetrahydrofuran (THF) to improve thehydriding kinetics of Mg_2Ni alloy is suggested and studied. It is found that the modified alloydisplayed the improved activity for hydriding...A new approach of ball-milled Mg_2Ni in tetrahydrofuran (THF) to improve thehydriding kinetics of Mg_2Ni alloy is suggested and studied. It is found that the modified alloydisplayed the improved activity for hydriding even at relatively low temperature (e.g., 323-373 K).In the case of the sample milled in THF for 20 h, the hydrogen content (mass fraction) reaches 1.6 %at 323 K, 2.1% at 348 K and 3.4% at 448 K, respectively. The use of THF during grinding led to thechange of the structure, which is reflected by the broadening and weakening of the diffraction peaksin the XRD spectra. The XPS analysis shows that Mg (2s) binding energy peak of Mg_2Ni aftermodification shifted from a lower binding energy to a higher one, indicating the charge transferencebetween Mg and THF and the formation of catalytically active electron donor-acceptor (EDA)complexes on the surface of modified Mg_2Ni alloy.展开更多
The electrochemical properties of the as-cast and ball-milled CeMg12+x%(mass fraction) Ni (vs. CeMg12) (x=0, 50, 100 and 200) composites were investigated. The microstructure and discharge capacity of the ball-milled ...The electrochemical properties of the as-cast and ball-milled CeMg12+x%(mass fraction) Ni (vs. CeMg12) (x=0, 50, 100 and 200) composites were investigated. The microstructure and discharge capacity of the ball-milled CeMg12+x%Ni composites differ greatly depending on the amount of Ni introduced during ball-milling. The more nickel powder added, the more advantageous for the formation of the amorphous structure. And the discharge capacities of the ball-milled composites increase with increasing amount of nickel added. After 90 h ball-milling, the CeMg12+200% Ni composite exhibits a high discharge capacity of 1170 mAh·g-1(CeMg12)-1 at 303 K. The improvement of electrochemical capacity is attributed to the formation of a homogeneous amorphous structure as well as the modification of the surface state after Ni addition.展开更多
In this work, the influence of graphite on the ball-milled TiC, was studied. The results show that the lattice parameter of TiC, is increased when TiC, particles are ball-milled with graphite, which indicates a decrea...In this work, the influence of graphite on the ball-milled TiC, was studied. The results show that the lattice parameter of TiC, is increased when TiC, particles are ball-milled with graphite, which indicates a decrease in the concentration of carbon vacancies in the TIC,. It is considered that this decrease in the concentration of carbon vacancies results from the diffusion of carbon atoms from graphite into the TiCx. When the TiCx is ball-milled with more graphite, the effectiveness of the ball-milling is better, and the diffusion process of carbon becomes much easier. Furthermore, besides diffusion into the TiCx, some graphite has transformed into amorphous carbon after the ball-milling.展开更多
The effects of particle size of activated carbon (AC) on its wettability, electrode coating technology and electric chemical performance were studied to assemble nonaqueous electric double layer capacitors (EDLCs)...The effects of particle size of activated carbon (AC) on its wettability, electrode coating technology and electric chemical performance were studied to assemble nonaqueous electric double layer capacitors (EDLCs) for high power requirements. The results show that the specific surface area and total pore volume of AC decrease from 2 137 m^2/g to 1 683 m^2/g, and 0.95 cm^3/g to 0.78 cm^3/g, respectively, if it is ball-milled for 8 h. The pore size distributions are similar in the range of 0.7 nm to 3.5 nm for different ball-milling time. There exists oxidation on the surface of AC during the ball-milling process and the ratios of O-C=O oxygen compositions increase whereas those of C-O, C=O decrease. The peeling strength of AC coated on current collector is almost inverse proportion with the particle size of AC as well as the resistance of EDLCs, and its capacitance decreases about 6%.展开更多
Manganese (Mn) is an essential element for human body. However, elevated concentration of manganese causes severe problem and disease. Acid mine drainage (AMD), wastewater generated due to open-pit mining, commonly co...Manganese (Mn) is an essential element for human body. However, elevated concentration of manganese causes severe problem and disease. Acid mine drainage (AMD), wastewater generated due to open-pit mining, commonly contains Mn with exceeded concentration. This study is to investigate the improvement of ball-milling modified Indonesian natural bentonite (INB) for manganese (Mn) removal from AMD and to increase the pH through batch and column sorption test as a passive treatment system approach. The batch sorption test result showed the maximum Mn adsorbed (Qm) on INB from the Langmuir model increased from 4.69 to 17.12 mg/g after milling. The column sorption test result also showed the amount of Mn adsorbed on INB until breakthrough time (qu) and until saturation time (q) increased after milling. The qu increased from 1.27 to 10.06 mg/g, and the q increased from 4.55 to 12.91 mg/g. The mass transfer zone (MTZ) became significantly shorter after milling from 0.22 to 0.07 cm. The Thomas model exhibited the equilibrium uptake of Mn (q0) increased after milling from 3.91 to 13.72 mg/g. In equilibrium condition, both unmilled and milled INB showed the pH increased from ≈3 to 8.展开更多
A one-step synthetic method was used to synthesize Olivline LiFePO4 powders by direct ball milling the stoichiometric mixture of Fe, Li3PO4 , and FePO4 powders. XRD and TEM measurements revealed that the as-prepared L...A one-step synthetic method was used to synthesize Olivline LiFePO4 powders by direct ball milling the stoichiometric mixture of Fe, Li3PO4 , and FePO4 powders. XRD and TEM measurements revealed that the as-prepared LiFePO4 powder have a homogeneous Olivine structure and a uniform size distribution of ca. 50 nm. Based on this material, a LiFePO4/C composite was prepared and used for the cathode material of Li-ion batteries. The charge-discharge experiments demonstrated that the LiFePO4/C composite material has a high capacity of 132 mAh/g at 0.1 C and a quite highrate capability of 95 mAh/g at 1 C. This new ball-milling method may provide a completely green synthetic route for preparing the materials of this type cost-effectively and in large volume.展开更多
Bulk nanocrystalline Mg2Si(n-Mg2Si) was prepared by mechanical milling and reactive hot-pressing in vacuum and its mechanical properties were characterized. The results indicate that the grain sizes of Mg and Si decre...Bulk nanocrystalline Mg2Si(n-Mg2Si) was prepared by mechanical milling and reactive hot-pressing in vacuum and its mechanical properties were characterized. The results indicate that the grain sizes of Mg and Si decrease non-monotonously with increasing ball-to-powder mass ratio(BPR). The content of Mg2Si phase increases with increasing milling time; however, pure Mg2Si phase cannot be obtained by direct ball milling. Moreover, monolithic is Mg2Si phase can only be obtained when as much as 10% of excess Mg was blended in the raw mixtures. The relative density (D) and fracture toughness as well as hardness of bulk Mg2Si samples can be raised effectively by increasing the pressure in hot-pressing. After hot-pressing at 400 ℃ for 60 min under 1.5 GPa, highly dense(D>98%) n-Mg2Si (d=60 nm) was obtained, whose fracture toughness (KIC≈1.46 MPa·m1/2) and Vickers hardness (HV≈ 4.38 Gpa) are superior to those of conventional coarse-grained Mg2Si.展开更多
Replacing platinum for catalyzing hydrogen evolution reaction (HER) in acidic medium remains great chal- lenges. Herein, we prepared few-layered MoS2 by ball milling as an efficient catalyst for HER in acidic medium...Replacing platinum for catalyzing hydrogen evolution reaction (HER) in acidic medium remains great chal- lenges. Herein, we prepared few-layered MoS2 by ball milling as an efficient catalyst for HER in acidic medium, The activity of as-prepared MoS2 had a strong dependence on the ball milling time, Furthermore, Ketjen Black EC 300J was added into the ball-milled MoS2 followed by a second ball milling, and the resultant MoS2/carbon black hybrid material showed a much higher HER activity than MoS2 and carbon black alone. The enhanced activity of the MoS2/carbon black hybrid material was attributed to the increased abundance of catalytic edge sites of MoS) and excellent electrical coupling to the underlving carbon network.展开更多
SMnxZn1-xFe2O4 (x=1,0.9,0.8,0.7,0.6,0.5,0.25,0) nanoparticles were prepared by ball-milling hydrothermal and investigated by X-ray diffraction, DTG and TEM. Nanocrystallite grain size was determined by X-ray linewid...SMnxZn1-xFe2O4 (x=1,0.9,0.8,0.7,0.6,0.5,0.25,0) nanoparticles were prepared by ball-milling hydrothermal and investigated by X-ray diffraction, DTG and TEM. Nanocrystallite grain size was determined by X-ray linewidth to be from 63 A to 274 A. The thermal properties indicate absorbed water still remain at low temperature, crystalline wate will be decomposed from 230 ℃ to 260 ℃, partial Mn^2+ will be oxidized near 730 ℃. TEM shows the ferrite particles pocess a spherical morphology and uniform nanosize.展开更多
A stainless steel/10wt%TiC nanocomposite particles were prepared by high-energy ball-milling method using stainless steel, carbon and titanium as raw materials. The evolution of phase composition, microstructure and s...A stainless steel/10wt%TiC nanocomposite particles were prepared by high-energy ball-milling method using stainless steel, carbon and titanium as raw materials. The evolution of phase composition, microstructure and specific surface area of the stainless steel/TiC nanocomposite particles with increasing ball-milling time in the range of 0-100 h were investigated by XRD, SEM, TEM and BET techniques. The results showed that the stainless steel/TiC nano-composite particles were fabricated when the ball-milling time was longer than 20 h. However, the nanocomposite particles were soldered and agglomerated again when the ball-milling time was longer than 60 h. The microstructure of the composite particles transformed from lamellar structure to nanostructure during the repeated process of the cold welding and cracking. TEM image reveals clearly that the in-situ TiC nanoparticles with grain size of 3-8 nm are in the interior of the stainless steel/TiC nanocomposite particles obtained by ball-milling 100 h.展开更多
Water-soluble lignin-carbohydrate complex(LCC)rich in polysaccharides exhibits benign in vitro antioxidant activities and distinguishes high biocompatibility from lignin-rich LCC and lignin.However,the antioxidant act...Water-soluble lignin-carbohydrate complex(LCC)rich in polysaccharides exhibits benign in vitro antioxidant activities and distinguishes high biocompatibility from lignin-rich LCC and lignin.However,the antioxidant activity of water-soluble LCCs remains to be improved and its structure-antioxidant relationship is still uncertain.Herein,structurally diversified water-soluble LCCs were isolated under different ball-milling pretreatment durations(4,6,8 h),extraction pathways(ho-mogeneous and heterogeneous),and isolation routines(water extracts and residues after water extraction).Their structures were characterized by wet chemistry,chromatography and spec-troscopies.Antioxidant activities were evaluated by ferric reducing antioxidant power and 1,1-diphenyl-2-picrylhydrazyl radicals scavenging rate(RDPPH).Results show that altering ball-milling duration and isolation procedures cause varied structures and antioxidant activities of the water-soluble LCCs.Specifically,prolonging ball-milling duration to 8 hours and homogeneous extrac-tion can enhance their antioxidant activity through releasing more phenolic structures and pro-moting the extraction of high-molecular-weight LCCs via reducing mass-transfer resistance,re-spectively.As a result,the RDPPH of water-soluble LCCs reaches up to 97.35%,which is associated with the arabinan content with statistical significance(P<0.05).This study provides new insights into the structure-antioxidation relationship of herbaceous LCC as potential antioxidants.展开更多
TiO2 particles with desirable properties were produced by undergoing specific durations of ball milling.Characterizations of the TiO2 particles before and after ball milling were investigated via X-ray diffraction(XR...TiO2 particles with desirable properties were produced by undergoing specific durations of ball milling.Characterizations of the TiO2 particles before and after ball milling were investigated via X-ray diffraction(XRD), Brunauer-Emmett-Teller(BET), particle size analysis, zeta potential, and scanning electron microscope(SEM). The equilibrium adsorption data were well fitted to Langmuir, Freundlich, and Dubinin-Radushkevich(D-R) isotherms. Compared to the as-received TiO2(mean particle size d150= 0.78μm, specific surface area = 88.17 m^2g-1, pore volume = 0.41 cm^3g-1), the 60 min ballmilled TiO2(d50= 0.55 μm, specific surface area = 99.48 m2g-1, pore volume = 0.48 cm3g-1) enhanced the adsorption quantity of congo red and methylene blue from 10.4 mg g-1to 13.6 mg g-1, and from17.0 mg g-1to 22.2 mg g-1, respectively; and also improved the kinetic rates from k = 0.1325 to 0.2193, and k = 0.0944 to 0.1553, respectively. Dye adsorption and degradation efficiency of congo red was enhanced in acidic p H range(2–5.14), and methylene blue was enhanced in alkaline p H range(7.58–12).展开更多
Stable aqueous carbon inks,with graphene sheets(GSs)and carbon black(CB)as conductive fillers,are prepared by a simple one-pot ball-milling method.The asprepared composite ink with 10 wt%GSs shows optimized rheologica...Stable aqueous carbon inks,with graphene sheets(GSs)and carbon black(CB)as conductive fillers,are prepared by a simple one-pot ball-milling method.The asprepared composite ink with 10 wt%GSs shows optimized rheological properties(viscosity and thixotropy)for screen printing.The as-printed coatings based on the above ink are uniform and dense on a polyimide substrate,and exhibit a sandwich-type conductive three dimensional network at the microscale.The resistivity of the typical composite coating is as low as 0.23±0.01Ωcm(92±4Ωsq^-1,25μm),which is 30%as that of a pure CB coating(0.77±0.01Ωcm).It is noteworthy that the resistivity decreases to 0.18±0.01Ωcm(72±4Ωsq^-1,25μm)after a further rolling compression.The coating exhibits good mechanical flexibility,and the resistance slightly increases by 12%after 3000 bending cycles.With the CB/GSs composite coatings as a flexible conductor,fascinating luminescent bookmarks and membrane switches were fabricated,demonstrating the tremendous potential of these coatings in the commercial production of flexible electronics and devices.展开更多
The ball milling process and the CuWO-WOprecursors were investigated, and a new highly concentrated wet ball-milled process(HWM) was designed. W-20 wt% Cu composite powders with excellent sintering property were synth...The ball milling process and the CuWO-WOprecursors were investigated, and a new highly concentrated wet ball-milled process(HWM) was designed. W-20 wt% Cu composite powders with excellent sintering property were synthesized by highly concentrated wet ballmilled process and co-reduction. The powders were characterized by scanning electron microscopy(SEM), X-ray diffraction(XRD), field electron transmission electron microscopy(FESEM) and laser-diffraction diameter tester.The results indicate that particle size of W03-CuO powder mixtures decreases to 390 nm rapidly with the milling time increasing to 5 h. The CuWOprecursors promote the microstructural homogeneity of W and Cu. W-Cu composite powders have a highly dispersed and well sintering property. The particle size of W-Cu powders milled by HWM for 5 h is about 680 nm. High-resolution transmission electron microscopy(HRTEM) result suggests that W phase and Cu phase are mixed at nanometer scale. The above W-Cu composite powders reach the relative density of about 99.3%.展开更多
Novel, low-cost Fe0/ZSM-5-based particles and porous tablets were prepared by a ballmilling method and used for the removal of Pb^2+ in solution. Solid-phase characterization by scanning electron microscopy coupled w...Novel, low-cost Fe0/ZSM-5-based particles and porous tablets were prepared by a ballmilling method and used for the removal of Pb^2+ in solution. Solid-phase characterization by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy(SEMEDS) and transmission electron microscopy(TEM) revealed that the Fe0 microparticles were evenly loaded and tightly immobilized on the surface of ZSM-5 because of the extrusion/welding impact during ball-milling. For different Pb2+ concentrations, batch experiments indicated that the removal of Pb2+ increased with the decline of dissolved Fe2+and p H value in the solution for particles; opposite results were obtained for the tablets. The differences in the contact between both materials and Pb2+ were the main factor controlling Pb2+ removal in the solution. Investigation into the effect of initial pH value revealed that high pH reduced the number of electrons released from Fe corrosion. Consequently, low levels of removed Pb2+ and dissolved Fe2+ were synchronously observed. Also, simulated electroplating wastewater was treated using the prepared particles and porous tablets,and the removal order of Pb^2+ 〉 Cr6^+〉 Cu^2+≈ Cd^2+ was observed. The Fe0/ZSM-5 particles and tablets prepared through ball-milling show potential as materials for treatment of Pb2+ and other toxic metals.展开更多
基金Project(50774099)supported by the National Natural Science Foundation of China
文摘In order to solve the problems of environment pollution and high cost in traditional process of bismuth subcarbonate preparation, a new process using ball-milling transformation method from NH4HCO3 and Bi2O3 was proposed. Additionally, the kinetics of bismuth subcarbonate preparation was studied. Effects of reaction temperature, particle size of bismuth oxide, solid-to-liquid ratio and concentrations of ammonium bicarbonate on the conversion rate of bismuth oxide were studied. The results indicate that the conversion rate of bismuth oxide significantly increased under the conditions of higher temperature, smaller particle size, higher concentration of ammonium bicarbonate and smaller solid-to-liquid ratio. The XRD and ICP-AES analyses show that the purity of product is high. The reaction kinetics with activation energy of 9.783 kJ/mol was analyzed by shrinking core model, and the whole transformation process is controlled by solid product layer diffusion. A semi-empirical kinetics equation was obtained to describe the conversion process.
基金supported by the Surface Project of Local Development in Science and Technology Guided by Central Government(No.2021ZYD0041)the National Natural Science Foundation of China(No.52074227)。
文摘To deal with the growing electromagnetic hazards,herein a Co@CuFe_(2)O_(4)absorbing agent with excellent impedance matching at thin thickness was obtained via an innovative route of ball-milling assisted chemical precipitation and annealing.The as-prepared composite possesses excellent interface polarization ability due to sufficient contact between CuFe_(2)O_(4)NPs and flat Co,and this compressed Co lamella can also provide sufficient eddy current loss.Moreover,the dipole polarization,electron hopping/conduction,and structural scattering also contribute to the broadband microwave absorption of the composite.Thus,the minimum microwave reflection loss achieves-35.56 d B at12.93 GHz for 1.8 mm thickness,and the broadest efficient absorption bandwidth can reach 6.74 GHz for a thinner thickness of 1.72 mm.The preparation method reported here can be referenced as a new-type route to manufacture electromagnetic absorbers with outstanding performance.
基金This work has been supported by the Xinjiang Uygur Autonomous Region Key R&D Program(2017B02012)the Xinjiang University Natural Science Foundation Project(BS160221).
文摘The Ni-Al2O3 catalyst was prepared by the mechanochemical method in combination with a planetary ballmilling machine.Effect of milling time on the crystal structure,the reduction characteristics and the catalytic performance of Ni-Al2O3 catalyst for hydrogenation of 1,4-butynediol to produce 1,4-butenediol were investigated.The catalysts were characterized by PSD,EDX,XRD,H2-TPR,BET,TEM,and NH3-TPD methods.Results showed that the MCt2.5 catalyst treated at a ball milling time of 2.5 h could form a smallest particle size of 191.0 nm.The evaluation experiments revealed that the activity of the prepared catalyst increased at first and then reached a constant value with the extension of ballmilling time.The BYD conversion,BED selectivity and yield on the MCt2.5 catalyst reached 35.63%,33.48%and 32.46%,respectively,which were higher than those obtained by other samples.The excellent performance of MCt2.5 sample is mainly related to the following three reasons from characterization results.Firstly,it has a smallest particle size of 191.0 nm;and then,the surface acidity(in terms of strong acids)of the catalyst was weaker than other catalysts;and eventually,the loading amount(23.84%)of the active component Ni exceeded the theoretical value(20%).
基金Project(20080430221) supported by China Postdoctoral Science Foundation Project(2008ZF52058) supported by the Aeronautical Science Foundation of ChinaProject(2009A610026) supported by the Natural Science Foundation of Ningbo City,China
文摘Effects of ball-milling parameter on structures and properties of sintered Mg-l.5Zr (mass fraction, %) alloy were researched by metallographic analysis, mechanical properties tests and DMA technology. The results indicate that with 310 r/min rotation speed, the microstructure of the sintered alloy is greatly refined, and Zr-phase distributes uniformly. The micro-hardness, bending strength and damping capacities are the greatest under 310 r/min rotation speed. The damping peak of sintered Mg-l.5Zr alloy increases with increasing frequency under the testing conditions. The relaxation time meets the Arrhenius relationship, and shows the characteristics of relaxation damping.
基金financial support of the National Natural Science Foundation(Nos.51373191,51472253)
文摘Cellulose is a linear polymer consisting of D-anhydroglucose units joined by β-1,4-glycosidic linkages. The densely packed cellulose molecular chain forms crystalline cellulose through strong hydrogen bonding. Owing to its chemical tunability and excellent mechanical resistance, nanocellulose is widely used in everyday life and the industrial sector. In this work, cellulose materials were nanoprocessed by mechanical ball-milling(1) in polar solvents(N,N-dimethylformamide or dimethyl sulfoxide) with esterification or(2) in hydrophobic agents(polydimethylsiloxane or polytetrafluoroethylene) with different molecular weights. Cellulose nanofibers and nanosheets with different hydrophilic and hydrophobic properties were obtained, and the mechanism of cellulose disintegration along a crystallographic plane induced by mechanical force and the polarity condition were discussed. This work affords a new way to manipulate the morphology and properties of nanocellulose.
基金This work is supported by the State Key Project for Fundamental Research (TG2000026406) and the National Natural Science Foundation of China (No. 50071053).
文摘A new approach of ball-milled Mg_2Ni in tetrahydrofuran (THF) to improve thehydriding kinetics of Mg_2Ni alloy is suggested and studied. It is found that the modified alloydisplayed the improved activity for hydriding even at relatively low temperature (e.g., 323-373 K).In the case of the sample milled in THF for 20 h, the hydrogen content (mass fraction) reaches 1.6 %at 323 K, 2.1% at 348 K and 3.4% at 448 K, respectively. The use of THF during grinding led to thechange of the structure, which is reflected by the broadening and weakening of the diffraction peaksin the XRD spectra. The XPS analysis shows that Mg (2s) binding energy peak of Mg_2Ni aftermodification shifted from a lower binding energy to a higher one, indicating the charge transferencebetween Mg and THF and the formation of catalytically active electron donor-acceptor (EDA)complexes on the surface of modified Mg_2Ni alloy.
文摘The electrochemical properties of the as-cast and ball-milled CeMg12+x%(mass fraction) Ni (vs. CeMg12) (x=0, 50, 100 and 200) composites were investigated. The microstructure and discharge capacity of the ball-milled CeMg12+x%Ni composites differ greatly depending on the amount of Ni introduced during ball-milling. The more nickel powder added, the more advantageous for the formation of the amorphous structure. And the discharge capacities of the ball-milled composites increase with increasing amount of nickel added. After 90 h ball-milling, the CeMg12+200% Ni composite exhibits a high discharge capacity of 1170 mAh·g-1(CeMg12)-1 at 303 K. The improvement of electrochemical capacity is attributed to the formation of a homogeneous amorphous structure as well as the modification of the surface state after Ni addition.
基金supported by the National Natural Science Fundation of China (grant No. 51071097)the Fundamental Research Fund for the Central Universities of China (grant No. 11QG67)
文摘In this work, the influence of graphite on the ball-milled TiC, was studied. The results show that the lattice parameter of TiC, is increased when TiC, particles are ball-milled with graphite, which indicates a decrease in the concentration of carbon vacancies in the TIC,. It is considered that this decrease in the concentration of carbon vacancies results from the diffusion of carbon atoms from graphite into the TiCx. When the TiCx is ball-milled with more graphite, the effectiveness of the ball-milling is better, and the diffusion process of carbon becomes much easier. Furthermore, besides diffusion into the TiCx, some graphite has transformed into amorphous carbon after the ball-milling.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.50672025, 50730003), and the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant Nos.06JC14018, 06DZ22003)
文摘The effects of particle size of activated carbon (AC) on its wettability, electrode coating technology and electric chemical performance were studied to assemble nonaqueous electric double layer capacitors (EDLCs) for high power requirements. The results show that the specific surface area and total pore volume of AC decrease from 2 137 m^2/g to 1 683 m^2/g, and 0.95 cm^3/g to 0.78 cm^3/g, respectively, if it is ball-milled for 8 h. The pore size distributions are similar in the range of 0.7 nm to 3.5 nm for different ball-milling time. There exists oxidation on the surface of AC during the ball-milling process and the ratios of O-C=O oxygen compositions increase whereas those of C-O, C=O decrease. The peeling strength of AC coated on current collector is almost inverse proportion with the particle size of AC as well as the resistance of EDLCs, and its capacitance decreases about 6%.
文摘Manganese (Mn) is an essential element for human body. However, elevated concentration of manganese causes severe problem and disease. Acid mine drainage (AMD), wastewater generated due to open-pit mining, commonly contains Mn with exceeded concentration. This study is to investigate the improvement of ball-milling modified Indonesian natural bentonite (INB) for manganese (Mn) removal from AMD and to increase the pH through batch and column sorption test as a passive treatment system approach. The batch sorption test result showed the maximum Mn adsorbed (Qm) on INB from the Langmuir model increased from 4.69 to 17.12 mg/g after milling. The column sorption test result also showed the amount of Mn adsorbed on INB until breakthrough time (qu) and until saturation time (q) increased after milling. The qu increased from 1.27 to 10.06 mg/g, and the q increased from 4.55 to 12.91 mg/g. The mass transfer zone (MTZ) became significantly shorter after milling from 0.22 to 0.07 cm. The Thomas model exhibited the equilibrium uptake of Mn (q0) increased after milling from 3.91 to 13.72 mg/g. In equilibrium condition, both unmilled and milled INB showed the pH increased from ≈3 to 8.
基金Supported bythe National Basic Research Programof China (2002CB211800) .
文摘A one-step synthetic method was used to synthesize Olivline LiFePO4 powders by direct ball milling the stoichiometric mixture of Fe, Li3PO4 , and FePO4 powders. XRD and TEM measurements revealed that the as-prepared LiFePO4 powder have a homogeneous Olivine structure and a uniform size distribution of ca. 50 nm. Based on this material, a LiFePO4/C composite was prepared and used for the cathode material of Li-ion batteries. The charge-discharge experiments demonstrated that the LiFePO4/C composite material has a high capacity of 132 mAh/g at 0.1 C and a quite highrate capability of 95 mAh/g at 1 C. This new ball-milling method may provide a completely green synthetic route for preparing the materials of this type cost-effectively and in large volume.
基金Project(50371081) supported by the National Natural Science Foundation of China
文摘Bulk nanocrystalline Mg2Si(n-Mg2Si) was prepared by mechanical milling and reactive hot-pressing in vacuum and its mechanical properties were characterized. The results indicate that the grain sizes of Mg and Si decrease non-monotonously with increasing ball-to-powder mass ratio(BPR). The content of Mg2Si phase increases with increasing milling time; however, pure Mg2Si phase cannot be obtained by direct ball milling. Moreover, monolithic is Mg2Si phase can only be obtained when as much as 10% of excess Mg was blended in the raw mixtures. The relative density (D) and fracture toughness as well as hardness of bulk Mg2Si samples can be raised effectively by increasing the pressure in hot-pressing. After hot-pressing at 400 ℃ for 60 min under 1.5 GPa, highly dense(D>98%) n-Mg2Si (d=60 nm) was obtained, whose fracture toughness (KIC≈1.46 MPa·m1/2) and Vickers hardness (HV≈ 4.38 Gpa) are superior to those of conventional coarse-grained Mg2Si.
基金the financial support from the Ministry of Science and Technology of China (grants 2012CB215500 and 2013CB933100)the National Natural Science Foundation of China (grants 21573222 and 21103178)
文摘Replacing platinum for catalyzing hydrogen evolution reaction (HER) in acidic medium remains great chal- lenges. Herein, we prepared few-layered MoS2 by ball milling as an efficient catalyst for HER in acidic medium, The activity of as-prepared MoS2 had a strong dependence on the ball milling time, Furthermore, Ketjen Black EC 300J was added into the ball-milled MoS2 followed by a second ball milling, and the resultant MoS2/carbon black hybrid material showed a much higher HER activity than MoS2 and carbon black alone. The enhanced activity of the MoS2/carbon black hybrid material was attributed to the increased abundance of catalytic edge sites of MoS) and excellent electrical coupling to the underlving carbon network.
基金Basic Research for Application of Sichuan Province(No.05JY029-071-2)
文摘SMnxZn1-xFe2O4 (x=1,0.9,0.8,0.7,0.6,0.5,0.25,0) nanoparticles were prepared by ball-milling hydrothermal and investigated by X-ray diffraction, DTG and TEM. Nanocrystallite grain size was determined by X-ray linewidth to be from 63 A to 274 A. The thermal properties indicate absorbed water still remain at low temperature, crystalline wate will be decomposed from 230 ℃ to 260 ℃, partial Mn^2+ will be oxidized near 730 ℃. TEM shows the ferrite particles pocess a spherical morphology and uniform nanosize.
基金Funded by the Natural Science Foundation of Hubei Province (No2006ABA304)
文摘A stainless steel/10wt%TiC nanocomposite particles were prepared by high-energy ball-milling method using stainless steel, carbon and titanium as raw materials. The evolution of phase composition, microstructure and specific surface area of the stainless steel/TiC nanocomposite particles with increasing ball-milling time in the range of 0-100 h were investigated by XRD, SEM, TEM and BET techniques. The results showed that the stainless steel/TiC nano-composite particles were fabricated when the ball-milling time was longer than 20 h. However, the nanocomposite particles were soldered and agglomerated again when the ball-milling time was longer than 60 h. The microstructure of the composite particles transformed from lamellar structure to nanostructure during the repeated process of the cold welding and cracking. TEM image reveals clearly that the in-situ TiC nanoparticles with grain size of 3-8 nm are in the interior of the stainless steel/TiC nanocomposite particles obtained by ball-milling 100 h.
基金support by National Natural Science Foundation of China (No.31670591)the fellowship of China Postdoctoral Science Foundation (No.2022M711229)+1 种基金Natural Science Foundation of Jiangsu Province (No.BK20160928)supported by the South Eastern Regional Sun Grant Centre and AgResearch at the University of Tennessee.
文摘Water-soluble lignin-carbohydrate complex(LCC)rich in polysaccharides exhibits benign in vitro antioxidant activities and distinguishes high biocompatibility from lignin-rich LCC and lignin.However,the antioxidant activity of water-soluble LCCs remains to be improved and its structure-antioxidant relationship is still uncertain.Herein,structurally diversified water-soluble LCCs were isolated under different ball-milling pretreatment durations(4,6,8 h),extraction pathways(ho-mogeneous and heterogeneous),and isolation routines(water extracts and residues after water extraction).Their structures were characterized by wet chemistry,chromatography and spec-troscopies.Antioxidant activities were evaluated by ferric reducing antioxidant power and 1,1-diphenyl-2-picrylhydrazyl radicals scavenging rate(RDPPH).Results show that altering ball-milling duration and isolation procedures cause varied structures and antioxidant activities of the water-soluble LCCs.Specifically,prolonging ball-milling duration to 8 hours and homogeneous extrac-tion can enhance their antioxidant activity through releasing more phenolic structures and pro-moting the extraction of high-molecular-weight LCCs via reducing mass-transfer resistance,re-spectively.As a result,the RDPPH of water-soluble LCCs reaches up to 97.35%,which is associated with the arabinan content with statistical significance(P<0.05).This study provides new insights into the structure-antioxidation relationship of herbaceous LCC as potential antioxidants.
文摘TiO2 particles with desirable properties were produced by undergoing specific durations of ball milling.Characterizations of the TiO2 particles before and after ball milling were investigated via X-ray diffraction(XRD), Brunauer-Emmett-Teller(BET), particle size analysis, zeta potential, and scanning electron microscope(SEM). The equilibrium adsorption data were well fitted to Langmuir, Freundlich, and Dubinin-Radushkevich(D-R) isotherms. Compared to the as-received TiO2(mean particle size d150= 0.78μm, specific surface area = 88.17 m^2g-1, pore volume = 0.41 cm^3g-1), the 60 min ballmilled TiO2(d50= 0.55 μm, specific surface area = 99.48 m2g-1, pore volume = 0.48 cm3g-1) enhanced the adsorption quantity of congo red and methylene blue from 10.4 mg g-1to 13.6 mg g-1, and from17.0 mg g-1to 22.2 mg g-1, respectively; and also improved the kinetic rates from k = 0.1325 to 0.2193, and k = 0.0944 to 0.1553, respectively. Dye adsorption and degradation efficiency of congo red was enhanced in acidic p H range(2–5.14), and methylene blue was enhanced in alkaline p H range(7.58–12).
基金supported by the Scientific and Technological Key Project of Shanxi Province (MC2016-04 and MC2016-08)Natural Science Foundation of Shanxi Province (201801D221156)+2 种基金DNL Cooperation Fund of CAS (DNL180308)Science and Technology Service Network Initiative of CAS (KFJ-STS-ZDTP-068)Youth Innovation Promotion Association of CAS
文摘Stable aqueous carbon inks,with graphene sheets(GSs)and carbon black(CB)as conductive fillers,are prepared by a simple one-pot ball-milling method.The asprepared composite ink with 10 wt%GSs shows optimized rheological properties(viscosity and thixotropy)for screen printing.The as-printed coatings based on the above ink are uniform and dense on a polyimide substrate,and exhibit a sandwich-type conductive three dimensional network at the microscale.The resistivity of the typical composite coating is as low as 0.23±0.01Ωcm(92±4Ωsq^-1,25μm),which is 30%as that of a pure CB coating(0.77±0.01Ωcm).It is noteworthy that the resistivity decreases to 0.18±0.01Ωcm(72±4Ωsq^-1,25μm)after a further rolling compression.The coating exhibits good mechanical flexibility,and the resistance slightly increases by 12%after 3000 bending cycles.With the CB/GSs composite coatings as a flexible conductor,fascinating luminescent bookmarks and membrane switches were fabricated,demonstrating the tremendous potential of these coatings in the commercial production of flexible electronics and devices.
基金financially supported by the National Natural Science Foundation of China (No. 51274246)
文摘The ball milling process and the CuWO-WOprecursors were investigated, and a new highly concentrated wet ball-milled process(HWM) was designed. W-20 wt% Cu composite powders with excellent sintering property were synthesized by highly concentrated wet ballmilled process and co-reduction. The powders were characterized by scanning electron microscopy(SEM), X-ray diffraction(XRD), field electron transmission electron microscopy(FESEM) and laser-diffraction diameter tester.The results indicate that particle size of W03-CuO powder mixtures decreases to 390 nm rapidly with the milling time increasing to 5 h. The CuWOprecursors promote the microstructural homogeneity of W and Cu. W-Cu composite powders have a highly dispersed and well sintering property. The particle size of W-Cu powders milled by HWM for 5 h is about 680 nm. High-resolution transmission electron microscopy(HRTEM) result suggests that W phase and Cu phase are mixed at nanometer scale. The above W-Cu composite powders reach the relative density of about 99.3%.
基金supported by the National Natural Science Foundation of China(Nos.51378180,21677162)
文摘Novel, low-cost Fe0/ZSM-5-based particles and porous tablets were prepared by a ballmilling method and used for the removal of Pb^2+ in solution. Solid-phase characterization by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy(SEMEDS) and transmission electron microscopy(TEM) revealed that the Fe0 microparticles were evenly loaded and tightly immobilized on the surface of ZSM-5 because of the extrusion/welding impact during ball-milling. For different Pb2+ concentrations, batch experiments indicated that the removal of Pb2+ increased with the decline of dissolved Fe2+and p H value in the solution for particles; opposite results were obtained for the tablets. The differences in the contact between both materials and Pb2+ were the main factor controlling Pb2+ removal in the solution. Investigation into the effect of initial pH value revealed that high pH reduced the number of electrons released from Fe corrosion. Consequently, low levels of removed Pb2+ and dissolved Fe2+ were synchronously observed. Also, simulated electroplating wastewater was treated using the prepared particles and porous tablets,and the removal order of Pb^2+ 〉 Cr6^+〉 Cu^2+≈ Cd^2+ was observed. The Fe0/ZSM-5 particles and tablets prepared through ball-milling show potential as materials for treatment of Pb2+ and other toxic metals.