The design theories of the ballastless track in the world are reviewed in comparison with the innovative research achievements of high-speed railway ballastless track in China.The calculation methods and parameters co...The design theories of the ballastless track in the world are reviewed in comparison with the innovative research achievements of high-speed railway ballastless track in China.The calculation methods and parameters concerning train load,thermal effect,and foundation deformation of high-speed railway ballastless track,together with the structural design methods are summarized.Finally,some suggestions on the future work are provided.展开更多
Track quality is a determinant factor for evaluating the overall performance of vehicle track interaction with respect to safety, ride quality and maintenance. Important parameters specifying the general quality of th...Track quality is a determinant factor for evaluating the overall performance of vehicle track interaction with respect to safety, ride quality and maintenance. Important parameters specifying the general quality of the track include track geometry (undamped) and track stiffness (damped), which can be evaluated by measurements taken along with track sections. A new co-simulation model based on Finite Element Method (FEM) and Multi Body Simulation (MBS) is built for the detailed description of track quality and its contribution to vehicle track interaction without simplifying the track structure as interconnected single elements. The simulation models and tools have been validated with the help of measured track geometry, track stiffness and dynamic wheel rail forces along the track sections of high speed lines. A comparative study between high speed lines using conventional ballasted track and ballastless track showed a significantly better quality in ballastless track sections. The dynamic forces which were determined by simulations and verified by measurements along the ballastless track section were comparatively less than the specified limits by German regulations for ballastless track design. Lower levels of dynamic forces can be utilized for optimization of track design and installation procedures with respect to lower initial costs.展开更多
基金supported by the National Natural Science Foundation of China (No. 51008258)the Fundamental Research Funds for the Central Universities (No. SWJTU09BR038)
文摘The design theories of the ballastless track in the world are reviewed in comparison with the innovative research achievements of high-speed railway ballastless track in China.The calculation methods and parameters concerning train load,thermal effect,and foundation deformation of high-speed railway ballastless track,together with the structural design methods are summarized.Finally,some suggestions on the future work are provided.
文摘Track quality is a determinant factor for evaluating the overall performance of vehicle track interaction with respect to safety, ride quality and maintenance. Important parameters specifying the general quality of the track include track geometry (undamped) and track stiffness (damped), which can be evaluated by measurements taken along with track sections. A new co-simulation model based on Finite Element Method (FEM) and Multi Body Simulation (MBS) is built for the detailed description of track quality and its contribution to vehicle track interaction without simplifying the track structure as interconnected single elements. The simulation models and tools have been validated with the help of measured track geometry, track stiffness and dynamic wheel rail forces along the track sections of high speed lines. A comparative study between high speed lines using conventional ballasted track and ballastless track showed a significantly better quality in ballastless track sections. The dynamic forces which were determined by simulations and verified by measurements along the ballastless track section were comparatively less than the specified limits by German regulations for ballastless track design. Lower levels of dynamic forces can be utilized for optimization of track design and installation procedures with respect to lower initial costs.