期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Protective performance of shear stiffening gel-modified foam against ballistic impact:Experimental and numerical study
1
作者 Huan Tu Haowei Yang +9 位作者 Pengzhao Xu Zhe Yang Fan Tang Cheng Dong Yuchao Chen Lei Ren Wenjian Cao Chenguang Huang Yacong Guo Yanpeng Wei 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期510-520,共11页
As one of the most widely used personal protective equipment(PPE),body armors play an important role in protecting the human body from the high-velocity impact of bullets or projectiles.The body torso and critical org... As one of the most widely used personal protective equipment(PPE),body armors play an important role in protecting the human body from the high-velocity impact of bullets or projectiles.The body torso and critical organs of the wear may suffer severe behind-armor blunt trauma(BABT)even though the impactor is stopped by the body armor.A type of novel composite material through incorporating shear stiffening gel(STG)into ethylene-vinyl acetate(EVA)foam is developed and used as buffer layers to reduce BABT.In this paper,the protective performance of body armors composed of fabric bulletproof layers and a buffer layer made of foam material is investigated both experimentally and numerically.The effectiveness of STG-modified EVA in damage relief is verified by ballistic tests.In parallel with the experimental study,numerical simulations are conducted by LS-DYNA®to investigate the dynamic response of each component and capture the key mechanical parameters,which are hardly obtained from field tests.To fully describe the material behavior under the transient impact,the selected constitutive models take the failure and strain rate effect into consideration.A good agreement between the experimental observations and numerical results is achieved to prove the validity of the modelling method.The tests and simulations show that the impact-induced deformation on the human body is significantly reduced by using STG-modified EVA as the buffering material.The improvement of protective performance is attributed to better dynamic properties and more outstanding energy absorption capability of the composite foam. 展开更多
关键词 ballistic behavior Composite foam Shear stiffening gel Finite element analysis Protective mechanism
下载PDF
Post deformation analysis of the ballistic impacted magnesium alloys,a short-review 被引量:2
2
作者 Abdul Malik Yangwei Wang +2 位作者 Cheng Huanwu Faisal Nazeer Muhammad Abubaker Khan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第5期1518-1535,共18页
From the mechanistic point of view,magnesium alloys are lightweight materials and are receiving increasing attention in the past several years in various fields.Prof.Liang Zhen from Harbin Institute of Technology,Chin... From the mechanistic point of view,magnesium alloys are lightweight materials and are receiving increasing attention in the past several years in various fields.Prof.Liang Zhen from Harbin Institute of Technology,China and the United State military are showing keen interest in the development of magnesium alloys as ballistic resistant material.However,their use is still limited owing to low ductility,low formability,and average mechanical properties.The magnesium alloys components must withstand the shockwave under hypervelocity ballistic impact.The ballistic testing can produce gradient variations of the strain and stress-energy away from the crater,and useful for the development of these alloys in the military and aerospace industry.Therefore,the present review article shed light on the post deformation analysis of the Mg alloys subjected to the different projectiles under ballistic impact,and the underlying mechanisms were discussed.In the end,some important issues regarding the ballistic impact and further studies in this field were proposed. 展开更多
关键词 ballistic behavior Mg alloys Deformed zones TEXTURE HARDNESS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部