Nose deflection control is a new concept of fast response control model.The partial nose of projectile deflects a certain angle relative to the axis of projectile body and then pressure difference emerges on the windw...Nose deflection control is a new concept of fast response control model.The partial nose of projectile deflects a certain angle relative to the axis of projectile body and then pressure difference emerges on the windward and leeward sides of warhead.Consequently,aerodynamic control force is generated.This control way has high control efficiency and very good application prospects in the ammunition system.Nose deflection actuator based on smart material and structure enables projectile body morphing to obtain additional aerodynamic force and moment,changes the aerodynamic characteristics in the projectile flight process,produces the corresponding balance angle and sideslip angle resulting in motor overload,adjusts flight moving posture to control the ballistics,finally changes shooting range and improves firing accuracy.In order to study characteristics of self-adaptive control projectile,numerical simulations are conducted by using fluid dynamics software ANSYS FLUENT for stabilized rocket projectile.The aerodynamic characteristics at different nose delectation angles,different Mach numbers and different angles of attack are obtained and compared.The results show that the nose deflection control has great influence on the head of rocket projectile,and it causes the asymmetry of the flow field structure and the increase of pressure differences of the warhead on the windward and leeward surface,which results in a larger lift.Finally,ballistics experiments are done for verification.The results can offer theoretical basis for self-adaptive rocket projectile design and optimization and also provide new ideas and methods for field smart ammunition research.展开更多
To investigate the ballistic performance and damage characteristics of quasi threedimensional(3D) needle-punched Cf/SiC composites prepared by chemical vapor infiltration(CVI),penetration experiments were conducte...To investigate the ballistic performance and damage characteristics of quasi threedimensional(3D) needle-punched Cf/SiC composites prepared by chemical vapor infiltration(CVI),penetration experiments were conducted by using 7.62 mm armor piercing incendiary(API).Macro and micro fracture morphologies were then observed on recycled targets.The results show that the protection coefficient of 3D Cf/SiC composites is 2.54.High porosity and many micro thermal stress cracks may directly lead to the lower ballistic performance.Flat fracture morphology was observed on the crater surface.The low dynamic fracture strength along layer direction may be attributed to the voids and microcracks caused by residual thermal stress.The damage characteristics of Cf/Si C composites include matrix cracking,fiber bundle cracking,interfacial debonding,fiber fracture,and fiber bundle pull-out.And interfacial debonding and fiber fracture may play major roles in energy absorption.展开更多
Several criteria for barrel lifetime were summarized and discussed. Based on large amount of test data,the advantages and disadvantages of the criteria were analyzed and the requirements for the easy and practical cri...Several criteria for barrel lifetime were summarized and discussed. Based on large amount of test data,the advantages and disadvantages of the criteria were analyzed and the requirements for the easy and practical criterion were put forward. Then,a new criterion based on the radical wear at the start points of the barrel lands was proposed. The close interrelationship between the radical wear and interior ballistic characteristics was illuminated theoretically and experimentally. The research results show the great value of this criterion to solve the problem of barrel lifetime.展开更多
The problem of measuring exterior ballistic feature points is always difficult to solve and it is essentiale on exterior ballistic measurement.By analysis of radar reflection characteristics and non-stationary echo si...The problem of measuring exterior ballistic feature points is always difficult to solve and it is essentiale on exterior ballistic measurement.By analysis of radar reflection characteristics and non-stationary echo signals of exterior ballistic feature points,the echo data of exterior ballistic feature points is measured by using the continuous wave radar.The parameters of feature points are extracted by the empirical mode decomposition method(EMD)of Hilbert-Huang transform(HHT)spectrum analysis technique.The radar echo signal model and EMD extraction model are established to analyze the exterior ballistic mutation point detection and EMD extraction method of aliasing echo signal.Typical feature point parameters of exterior ballistic in rocket flight tests are carried out and the effectiveness of the method is verified.A new method of measuring the parameters of exterior ballistic feature point is therefore presented.展开更多
文摘Nose deflection control is a new concept of fast response control model.The partial nose of projectile deflects a certain angle relative to the axis of projectile body and then pressure difference emerges on the windward and leeward sides of warhead.Consequently,aerodynamic control force is generated.This control way has high control efficiency and very good application prospects in the ammunition system.Nose deflection actuator based on smart material and structure enables projectile body morphing to obtain additional aerodynamic force and moment,changes the aerodynamic characteristics in the projectile flight process,produces the corresponding balance angle and sideslip angle resulting in motor overload,adjusts flight moving posture to control the ballistics,finally changes shooting range and improves firing accuracy.In order to study characteristics of self-adaptive control projectile,numerical simulations are conducted by using fluid dynamics software ANSYS FLUENT for stabilized rocket projectile.The aerodynamic characteristics at different nose delectation angles,different Mach numbers and different angles of attack are obtained and compared.The results show that the nose deflection control has great influence on the head of rocket projectile,and it causes the asymmetry of the flow field structure and the increase of pressure differences of the warhead on the windward and leeward surface,which results in a larger lift.Finally,ballistics experiments are done for verification.The results can offer theoretical basis for self-adaptive rocket projectile design and optimization and also provide new ideas and methods for field smart ammunition research.
基金Funded by the National Natural Science Foundation of China(No.51271036)
文摘To investigate the ballistic performance and damage characteristics of quasi threedimensional(3D) needle-punched Cf/SiC composites prepared by chemical vapor infiltration(CVI),penetration experiments were conducted by using 7.62 mm armor piercing incendiary(API).Macro and micro fracture morphologies were then observed on recycled targets.The results show that the protection coefficient of 3D Cf/SiC composites is 2.54.High porosity and many micro thermal stress cracks may directly lead to the lower ballistic performance.Flat fracture morphology was observed on the crater surface.The low dynamic fracture strength along layer direction may be attributed to the voids and microcracks caused by residual thermal stress.The damage characteristics of Cf/Si C composites include matrix cracking,fiber bundle cracking,interfacial debonding,fiber fracture,and fiber bundle pull-out.And interfacial debonding and fiber fracture may play major roles in energy absorption.
文摘Several criteria for barrel lifetime were summarized and discussed. Based on large amount of test data,the advantages and disadvantages of the criteria were analyzed and the requirements for the easy and practical criterion were put forward. Then,a new criterion based on the radical wear at the start points of the barrel lands was proposed. The close interrelationship between the radical wear and interior ballistic characteristics was illuminated theoretically and experimentally. The research results show the great value of this criterion to solve the problem of barrel lifetime.
基金Supported by the National Natural Science Foundation of China(61174219,51677192)
文摘The problem of measuring exterior ballistic feature points is always difficult to solve and it is essentiale on exterior ballistic measurement.By analysis of radar reflection characteristics and non-stationary echo signals of exterior ballistic feature points,the echo data of exterior ballistic feature points is measured by using the continuous wave radar.The parameters of feature points are extracted by the empirical mode decomposition method(EMD)of Hilbert-Huang transform(HHT)spectrum analysis technique.The radar echo signal model and EMD extraction model are established to analyze the exterior ballistic mutation point detection and EMD extraction method of aliasing echo signal.Typical feature point parameters of exterior ballistic in rocket flight tests are carried out and the effectiveness of the method is verified.A new method of measuring the parameters of exterior ballistic feature point is therefore presented.