For this study, an intercalation compounding method was used to prepare Chinese fir wood/Ca-montmorillonite (Ca-MMT) composite board to improve its properties such as surface mechanical properties, flame retardance ...For this study, an intercalation compounding method was used to prepare Chinese fir wood/Ca-montmorillonite (Ca-MMT) composite board to improve its properties such as surface mechanical properties, flame retardance and dimensional stability. By virtue of water-soluble phenolic resin (PF), Chinese fir wood and Ca-MMT were mixed by pressure and vacuum impregnation. The optimum impregnation technology of Chinese fir wood/Ca-MMT composite board was obtained by using an orthogonal design and a single factor design of pressure and vacuum impregnation, using weight percent gain (WPG) as the basic index. The results are as follows: 1) On the basis of the orthogonal design and an actual experiment, the optimum preparation technology of Chinese fir wood/Ca-MMT composite board is 20% PF resin dispersion concentration (wt%), 1.0 CEC amount of organic intercalation agent, 0.098 MPa vacuum degree, 5% concentration of Ca-MMT and 1.0 MPa pressure. 2) The WPG of the composite board samples of 450 mm length was much larger than that of the samples of 600, 750 and 900 mm length. Warm water extraction contributed little to WPG展开更多
Landscape designers increasingly prefer to use wood/bamboo-based composites for outdoor hydrophilic platforms owing to their natural surface texture,high performance,and sustainability to facilitate extensive interact...Landscape designers increasingly prefer to use wood/bamboo-based composites for outdoor hydrophilic platforms owing to their natural surface texture,high performance,and sustainability to facilitate extensive interaction between people and water and enable the full range of ecological functions of water resources.In this study,four laminated composite(LC)structures were designed and manufactured using fluffed bamboo and wood veneers.Their surface textures,profile densities,water resistances,and mechanical properties were then evaluated.The type of fluffed veneer of the surface layer determined the texture of the LC surface.The specific structures of fluffed bamboo and wood veneer laminations were found to affect the LC profile density variability,water resistance,and mechanical properties owing to the differences in the strength and interfacial properties of bamboo and wood fibers.Finally,the water resistance and mechanical properties of all four LCs were found to be much higher than the highest level specified in GB/T 20241-2006 for“laminated veneer lumber”and GB/T 30364-2013 for“bamboo scrimber flooring”,indicating that they are promising materials for structures and flooring,particularly for outdoor hydrophilic platforms.展开更多
We studied the effect of wollastonite nanofibers on fluid flow in medium-density fiberboard (MDF). Nanowollastonite (NW) was applied in MDF at 10 %, based on the dry weight of wood fibers. We also tested chicken f...We studied the effect of wollastonite nanofibers on fluid flow in medium-density fiberboard (MDF). Nanowollastonite (NW) was applied in MDF at 10 %, based on the dry weight of wood fibers. We also tested chicken feathers as an additive to the matrix at 5 and 10 % by weight. The weight of feathers was reduced from the wood fibers to keep the density of the panels constant (0.66 g cm-3). Wollastonite nanofibers acted as filler in the matrix and significantly decreased gas and liquid perme- ability. Higher thermal conductivity of the N-W-treated MDF-mats resulted in a better cure of resin, and conse- quently more integrity in the composite-matrix and lower permeability. The water-repellant property of wollastonite also contributed to the decrease in liquid permeability. Feathers reduced gas and liquid permeability due to the hydrophobic nature of keratin, as well as its formation as a physical barrier towards passing of fluids. Ten percent feather content proved too high and some checks and cracks occurred in the core of the panels after hot-pressing. Panels with 5 %-feather content resulted in both lower fluid flow and adequate physical integrity in the core sec- tion of the MDF-matrix.展开更多
A study is carried out on the structural design of wood-plastic composite floors. The geometric parameters of the cavities, the structure, and the means to optimize the performance of these light boards are investigat...A study is carried out on the structural design of wood-plastic composite floors. The geometric parameters of the cavities, the structure, and the means to optimize the performance of these light boards are investigated. Various structural parameters of the boards, such as size, shape, and the pattern of cavities are also studied. The optimal structure can be determined by calculation and analysis of the strength, stiffness, weight and cost of the material. A finite element model for the mechanical analysis of wood-plastic composite floors is established; and the results are used to verify the strength criteria under bending deformation, which is the most common loading condition of flooring board.展开更多
基金the National Natural Science Foundation of China (Grant No.30271055)
文摘For this study, an intercalation compounding method was used to prepare Chinese fir wood/Ca-montmorillonite (Ca-MMT) composite board to improve its properties such as surface mechanical properties, flame retardance and dimensional stability. By virtue of water-soluble phenolic resin (PF), Chinese fir wood and Ca-MMT were mixed by pressure and vacuum impregnation. The optimum impregnation technology of Chinese fir wood/Ca-MMT composite board was obtained by using an orthogonal design and a single factor design of pressure and vacuum impregnation, using weight percent gain (WPG) as the basic index. The results are as follows: 1) On the basis of the orthogonal design and an actual experiment, the optimum preparation technology of Chinese fir wood/Ca-MMT composite board is 20% PF resin dispersion concentration (wt%), 1.0 CEC amount of organic intercalation agent, 0.098 MPa vacuum degree, 5% concentration of Ca-MMT and 1.0 MPa pressure. 2) The WPG of the composite board samples of 450 mm length was much larger than that of the samples of 600, 750 and 900 mm length. Warm water extraction contributed little to WPG
基金the Science and Technology Project of Zhejiang Province(2021C02012)the Science Foundation of Zhejiang Provincial Department of Education(113429A4F21070)the Science Foundation of Zhejiang Sci-Tech University(11340031282014 and 11343132612052).
文摘Landscape designers increasingly prefer to use wood/bamboo-based composites for outdoor hydrophilic platforms owing to their natural surface texture,high performance,and sustainability to facilitate extensive interaction between people and water and enable the full range of ecological functions of water resources.In this study,four laminated composite(LC)structures were designed and manufactured using fluffed bamboo and wood veneers.Their surface textures,profile densities,water resistances,and mechanical properties were then evaluated.The type of fluffed veneer of the surface layer determined the texture of the LC surface.The specific structures of fluffed bamboo and wood veneer laminations were found to affect the LC profile density variability,water resistance,and mechanical properties owing to the differences in the strength and interfacial properties of bamboo and wood fibers.Finally,the water resistance and mechanical properties of all four LCs were found to be much higher than the highest level specified in GB/T 20241-2006 for“laminated veneer lumber”and GB/T 30364-2013 for“bamboo scrimber flooring”,indicating that they are promising materials for structures and flooring,particularly for outdoor hydrophilic platforms.
基金supported by Shahid Rajaee Teacher Training University
文摘We studied the effect of wollastonite nanofibers on fluid flow in medium-density fiberboard (MDF). Nanowollastonite (NW) was applied in MDF at 10 %, based on the dry weight of wood fibers. We also tested chicken feathers as an additive to the matrix at 5 and 10 % by weight. The weight of feathers was reduced from the wood fibers to keep the density of the panels constant (0.66 g cm-3). Wollastonite nanofibers acted as filler in the matrix and significantly decreased gas and liquid perme- ability. Higher thermal conductivity of the N-W-treated MDF-mats resulted in a better cure of resin, and conse- quently more integrity in the composite-matrix and lower permeability. The water-repellant property of wollastonite also contributed to the decrease in liquid permeability. Feathers reduced gas and liquid permeability due to the hydrophobic nature of keratin, as well as its formation as a physical barrier towards passing of fluids. Ten percent feather content proved too high and some checks and cracks occurred in the core of the panels after hot-pressing. Panels with 5 %-feather content resulted in both lower fluid flow and adequate physical integrity in the core sec- tion of the MDF-matrix.
基金Project supported by the National 12th Five-Year Plan of Science and Technology with Grant No.2012BAD23B0203
文摘A study is carried out on the structural design of wood-plastic composite floors. The geometric parameters of the cavities, the structure, and the means to optimize the performance of these light boards are investigated. Various structural parameters of the boards, such as size, shape, and the pattern of cavities are also studied. The optimal structure can be determined by calculation and analysis of the strength, stiffness, weight and cost of the material. A finite element model for the mechanical analysis of wood-plastic composite floors is established; and the results are used to verify the strength criteria under bending deformation, which is the most common loading condition of flooring board.