More and more novel nature fibers are used in textiles. The natural fibers include banana fiber, pineapple fiber and bamboo fiber etc. In this paper, as a kind of novel natural fiber, mulberry fiber is studied. The ch...More and more novel nature fibers are used in textiles. The natural fibers include banana fiber, pineapple fiber and bamboo fiber etc. In this paper, as a kind of novel natural fiber, mulberry fiber is studied. The chemical component of mulberry bast is tested and analyzed. Meanwhile, the degumming method and process of mulberry bast are studied. Chemical degumming experiments to investigate the influence of alkali concentration, alkali boiling time and sodium phosphate tribasic ratio to material are conducted. Consequently, optimum parameters are obtained. The crystallinity of mulberry fiber is tested by using X-ray line, and the photos of scanning electron microscope (SEM) are observed. Testing results of the fiber properties (e. g. fineness, tenacity, length and elongation) show that mulberry fiber can be spun blend with cotton.展开更多
In order to investigate the effect of the relative motion of nano CaCO_(3)reinforced bamboo pulp fiber(BPF)/HDPE composite components on the mechanical performance,a comparative study was performed.BPF was treated by ...In order to investigate the effect of the relative motion of nano CaCO_(3)reinforced bamboo pulp fiber(BPF)/HDPE composite components on the mechanical performance,a comparative study was performed.BPF was treated by nano CaCO_(3)blending(BM)and impregnation modification(IM)technology.The composites were produced using hot press(HPMP),extrusion(EMP)and injection molding process(IMP).The physical morphology of BPF was similar at different manufacturing processes.Compared to the samples manufactured by HPMP,a decrease in the(specific)flexural strength of BPF/HDPE composites and an increase in those of composites treated by nano CaCO_(3)manufactured by EMP and IMP were observed.The injection molded composites exhibited the best values in the(specific)impact strength,(specific)tensile properties.IM had a greater effect on the rheological behavior of the composites than BM,and nano CaCO_(3)treatment most effectively affected the performance of the extrusion molded composites.展开更多
文摘More and more novel nature fibers are used in textiles. The natural fibers include banana fiber, pineapple fiber and bamboo fiber etc. In this paper, as a kind of novel natural fiber, mulberry fiber is studied. The chemical component of mulberry bast is tested and analyzed. Meanwhile, the degumming method and process of mulberry bast are studied. Chemical degumming experiments to investigate the influence of alkali concentration, alkali boiling time and sodium phosphate tribasic ratio to material are conducted. Consequently, optimum parameters are obtained. The crystallinity of mulberry fiber is tested by using X-ray line, and the photos of scanning electron microscope (SEM) are observed. Testing results of the fiber properties (e. g. fineness, tenacity, length and elongation) show that mulberry fiber can be spun blend with cotton.
基金This study is financially supported by the Basic Research Operating Expenses Program of International Centre for Bamboo and Rattan(1632021002).
文摘In order to investigate the effect of the relative motion of nano CaCO_(3)reinforced bamboo pulp fiber(BPF)/HDPE composite components on the mechanical performance,a comparative study was performed.BPF was treated by nano CaCO_(3)blending(BM)and impregnation modification(IM)technology.The composites were produced using hot press(HPMP),extrusion(EMP)and injection molding process(IMP).The physical morphology of BPF was similar at different manufacturing processes.Compared to the samples manufactured by HPMP,a decrease in the(specific)flexural strength of BPF/HDPE composites and an increase in those of composites treated by nano CaCO_(3)manufactured by EMP and IMP were observed.The injection molded composites exhibited the best values in the(specific)impact strength,(specific)tensile properties.IM had a greater effect on the rheological behavior of the composites than BM,and nano CaCO_(3)treatment most effectively affected the performance of the extrusion molded composites.