Bamboo is a green construction material in line with sustainable development strategies.The use of raw bamboo in architecture has existed since ancient times.In the long development years of original bamboo buildings,...Bamboo is a green construction material in line with sustainable development strategies.The use of raw bamboo in architecture has existed since ancient times.In the long development years of original bamboo buildings,many areas in the world gradually formed unique bamboo buildings,which have become an important local cultural feature.For building structures,joints are the key to ensure structural load transfer.Because of hollow and thin-walled material property of bamboo,the connection in raw bamboo buildings has always been a major difficulty and problem in the application of bamboo,which seriously hinders the development of original bamboo structures.In order to promote the use of raw bamboo,two traditional connection methods in raw bamboo structures are described in this paper firstly,with the advantages and disadvantages of the two methods pointed out.Also,research progress on four categories of raw bamboo building joints is described namely,bolt joints,steel member joints,filler reinforced joints and other types of joints.This work can provide a reference for future research and engineering applications.展开更多
Bamboo shoot shell(BSS),a by-product from bamboo shoot processing industries,is a natural resource of cellulose. In this study,high-pressure homogenization assisted with acidolysis treatment was employed to produce ...Bamboo shoot shell(BSS),a by-product from bamboo shoot processing industries,is a natural resource of cellulose. In this study,high-pressure homogenization assisted with acidolysis treatment was employed to produce BSS cellulose nanofiber(CNF),and the structure was characterized by powder X-ray diffraction(XRD),Fourier-transform infrared(FT-IR) spectroscopy,atomic force microscopy(AFM),high resolution transmission electron microscopy(HTTEM),thermogravimetric analysis(TGA),and ^13 C nuclear magnetic resonance(NMR). Moreover,the structure and properties of CNF were compared with those of BSS insoluble dietary fiber(IDF). The results showed that CNF was in the form of a grid-like micro fiber,and its particle size was obviously reduced,while the crystallinity,thermal stability and solubility were increased. The results indicated that high-pressure homogenization assisted with acidolysis treatment was an effective method to prepare the BSS CNF,which could be a promising biopolymer reinforced material.展开更多
Thermal and moisture characteristics of the bamboo structure wall were tested in natural climate and three representative variation processes of heat and moisture: heating from solar radiation in summer at normal tem...Thermal and moisture characteristics of the bamboo structure wall were tested in natural climate and three representative variation processes of heat and moisture: heating from solar radiation in summer at normal temperature and humidity, heating from solar radiation in summer at normal temperature and high humidity after rain, humidifying from brash in summer at high temperature and normal humidity. The results show that, in summer, the largest temperature difference between external and internal surface of the 28 mm-thick bamboo plywood wall is 11.73℃ (at 15:40) and the largest strain difference is 136 μm/m (at 18:50), both in ambient and indoor conditioned environment. In heating process, lengthways of the wall surface are in contracting strain while transverse ways are in expanding strain at initial stage and in contracting strain during later period. When the high temperature wall is humidified by rain, the surface temperature drops, moisture content increases and the expanding strain is presented on the surface during the whole process. Temperature and moisture content are two important factors which affect thermal and moisture stress (TMS) of the bamboo structure wall. The TMS is not only related to temperature and moisture content, but also greatly affected by temperature gradient, moisture content gradient and rates of changing.展开更多
基金supported by the Natural Science Foundation of Jiang-su Province(No.BK20181402)the National Natural Science Foundation of China(51878354)+2 种基金National Key R&D Program of China,the Open Fund Project from Key Laboratory of Concrete and Pre-stressed Concrete Structure of Ministry of Education(Southeast university)the China Postdoctoral Science Foundation(2015M580382)Jiangsu Postdoctoral Science Foundation Project(1501037A),Qing Lan Project,and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Bamboo is a green construction material in line with sustainable development strategies.The use of raw bamboo in architecture has existed since ancient times.In the long development years of original bamboo buildings,many areas in the world gradually formed unique bamboo buildings,which have become an important local cultural feature.For building structures,joints are the key to ensure structural load transfer.Because of hollow and thin-walled material property of bamboo,the connection in raw bamboo buildings has always been a major difficulty and problem in the application of bamboo,which seriously hinders the development of original bamboo structures.In order to promote the use of raw bamboo,two traditional connection methods in raw bamboo structures are described in this paper firstly,with the advantages and disadvantages of the two methods pointed out.Also,research progress on four categories of raw bamboo building joints is described namely,bolt joints,steel member joints,filler reinforced joints and other types of joints.This work can provide a reference for future research and engineering applications.
文摘Bamboo shoot shell(BSS),a by-product from bamboo shoot processing industries,is a natural resource of cellulose. In this study,high-pressure homogenization assisted with acidolysis treatment was employed to produce BSS cellulose nanofiber(CNF),and the structure was characterized by powder X-ray diffraction(XRD),Fourier-transform infrared(FT-IR) spectroscopy,atomic force microscopy(AFM),high resolution transmission electron microscopy(HTTEM),thermogravimetric analysis(TGA),and ^13 C nuclear magnetic resonance(NMR). Moreover,the structure and properties of CNF were compared with those of BSS insoluble dietary fiber(IDF). The results showed that CNF was in the form of a grid-like micro fiber,and its particle size was obviously reduced,while the crystallinity,thermal stability and solubility were increased. The results indicated that high-pressure homogenization assisted with acidolysis treatment was an effective method to prepare the BSS CNF,which could be a promising biopolymer reinforced material.
基金Project(50878078) supported by the National Natural Science Foundation of China
文摘Thermal and moisture characteristics of the bamboo structure wall were tested in natural climate and three representative variation processes of heat and moisture: heating from solar radiation in summer at normal temperature and humidity, heating from solar radiation in summer at normal temperature and high humidity after rain, humidifying from brash in summer at high temperature and normal humidity. The results show that, in summer, the largest temperature difference between external and internal surface of the 28 mm-thick bamboo plywood wall is 11.73℃ (at 15:40) and the largest strain difference is 136 μm/m (at 18:50), both in ambient and indoor conditioned environment. In heating process, lengthways of the wall surface are in contracting strain while transverse ways are in expanding strain at initial stage and in contracting strain during later period. When the high temperature wall is humidified by rain, the surface temperature drops, moisture content increases and the expanding strain is presented on the surface during the whole process. Temperature and moisture content are two important factors which affect thermal and moisture stress (TMS) of the bamboo structure wall. The TMS is not only related to temperature and moisture content, but also greatly affected by temperature gradient, moisture content gradient and rates of changing.