Let C be the familiar class of normalized close-to-convex functions in the unit disk.In[17],Koepf demonstrated that,as to a function■in the class C,■By applying this inequality,it can be proven that‖a3|-|a2‖≤1 fo...Let C be the familiar class of normalized close-to-convex functions in the unit disk.In[17],Koepf demonstrated that,as to a function■in the class C,■By applying this inequality,it can be proven that‖a3|-|a2‖≤1 for close-to-convex functions.Now we generalized the above conclusions to a subclass of close-to-starlike mappings defined on the unit ball of a complex Banach space.展开更多
In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Su...In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.展开更多
The purpose of this paper is to introduce and study the split equality variational inclusion problems in the setting of Banach spaces. For solving this kind of problems, some new iterative algorithms are proposed. Und...The purpose of this paper is to introduce and study the split equality variational inclusion problems in the setting of Banach spaces. For solving this kind of problems, some new iterative algorithms are proposed. Under suitable conditions, some strong convergence theorems for the sequences generated by the proposed algorithm are proved. As applications, we shall utilize the results presented in the paper to study the split equality feasibility prob- lems in Banach spaces and the split equality equilibrium problem in Banach spaces. The results presented in the paper are new.展开更多
This paper studies the convergence of the sequence defined by x0 ∈ C, xn+l =αnu+(1-αn)Txn, n=0, 1,2,..., where 0 ≤αn ≤ 1, limn→∞ αn = 0, ∑n=0^∞ αn = ∞, and T is a nonexpansive mapping from a nonempty...This paper studies the convergence of the sequence defined by x0 ∈ C, xn+l =αnu+(1-αn)Txn, n=0, 1,2,..., where 0 ≤αn ≤ 1, limn→∞ αn = 0, ∑n=0^∞ αn = ∞, and T is a nonexpansive mapping from a nonempty closed convex subset C of a Banach space X into itself. The iterative sequence {xn} converges strongly to a fixed point of T in the case when X is a uniformly convex Banach space with a uniformly Gateaux differentiable norm or a uniformly smooth Banach space only. The results presented in this paper extend and improve some recent results.展开更多
In this paper we prove the following Hajek Renyi inequality:Let 0<p≤1 ,then for any Banach space B , any L p integrable B valued random variable sequence {D n,n≥1} ,any real number sequence {b...In this paper we prove the following Hajek Renyi inequality:Let 0<p≤1 ,then for any Banach space B , any L p integrable B valued random variable sequence {D n,n≥1} ,any real number sequence {b n,n≥1} with 0<b n↑∞ ,any integer n≥1 ,there exits a constant C=C p>0 (only depending on p ) such thatP( sup j≥nji=1D ib j≥ε)≤Cε -p (∞j=n+1E‖D j‖ pb p j+nj=1E‖D j‖ pb p n) In the other direction,we prove some strong laws of large numbers and the integrability of the maximal functions for B valued random variable sequences by using this inequality and the Hajeck Renyi inequality we have obtained recently.Some known results are extended and improved.展开更多
In this paper,the approximation problems of Ishikawa iteration with errors of fixed points for asymptotically nonexpansive mappings and asymptotically pseudocontractive mappings in arbitrary real Banach spaces are inv...In this paper,the approximation problems of Ishikawa iteration with errors of fixed points for asymptotically nonexpansive mappings and asymptotically pseudocontractive mappings in arbitrary real Banach spaces are investigated.Some necessary condition and sufficient condition for the convergence of iterative sequences are given respectively.The results thus extend and improve some recent corresponding results.展开更多
In this paper, we investigate a new perturbation theorem for the Moore-Penrose metric generalized inverses of a bounded linear operator in Banach space. The main tool in this paper is "the generalized Neumann lemma"...In this paper, we investigate a new perturbation theorem for the Moore-Penrose metric generalized inverses of a bounded linear operator in Banach space. The main tool in this paper is "the generalized Neumann lemma" which is quite different from the method in [12] where "the generalized Banach lemma" was used. By the method of the perturba- tion analysis of bounded linear operators, we obtain an explicit perturbation theorem and three inequalities about error estimates for the Moore-Penrose metric generalized inverse of bounded linear operator under the generalized Neumann lemma and the concept of stable perturbations in Banach spaces.展开更多
Let f be a C^1 map between two Banach spaces E and F. It has been proved that the concept of generalized regular points of f, which is a generalization of the notion of regular points of f, has some crucial applicatio...Let f be a C^1 map between two Banach spaces E and F. It has been proved that the concept of generalized regular points of f, which is a generalization of the notion of regular points of f, has some crucial applications in nonlinearity and global analysis. We characterize the generalized regular points of f using the three integer-valued (or infinite) indices M(x0), Mc(x0) and Mr(x0) at x0 ∈ E generated by f and by analyzing generalized inverses of bounded linear operators on Banach spaces, that is, iff '(x0) has a generalized inverse in the Banach space B(E, F) of all bounded linear operators on E into F and at least one of the indices M(x0), Mc(x0) and Mr(x0) is finite, then xo is a generalized regular point off if and only if the multi-index (M(x), Me(x), Mr(x)) is continuous at X0.展开更多
In this paper, based on a basic result on condensing mappings satisfying the interior condition, some new fixed point theorems of the condensing mappings of this kind are obtained. As a result, the famous Altman's th...In this paper, based on a basic result on condensing mappings satisfying the interior condition, some new fixed point theorems of the condensing mappings of this kind are obtained. As a result, the famous Altman's theorem, Roth's theorem and Petryshyn's theorem are extended to condensing mappings satisfying the interior condition.展开更多
We study the single projection algorithm of Tseng for solving a variational inequality problem in a 2-uniformly convex Banach space.The underline cost function of the variational inequality is assumed to be monotone a...We study the single projection algorithm of Tseng for solving a variational inequality problem in a 2-uniformly convex Banach space.The underline cost function of the variational inequality is assumed to be monotone and Lipschitz continuous.A weak convergence result is obtained under reasonable assumptions on the variable step-sizes.We also give the strong convergence result for when the underline cost function is strongly monotone and Lipchitz continuous.For this strong convergence case,the proposed method does not require prior knowledge of the modulus of strong monotonicity and the Lipschitz constant of the cost function as input parameters,rather,the variable step-sizes are diminishing and non-summable.The asymptotic estimate of the convergence rate for the strong convergence case is also given.For completeness,we give another strong convergence result using the idea of Halpern iteration when the cost function is monotone and Lipschitz continuous and the variable step-sizes are bounded by the inverse of the Lipschitz constant of the cost function.Finally,we give an example of a contact problem where our proposed method can be applied.展开更多
A new class of bilcvel generalized mixed equilibrium problems involving setvalued mappings is introduced and studied in a real Banach space. By using the auxiliary principle technique, new iterative algorithms for sol...A new class of bilcvel generalized mixed equilibrium problems involving setvalued mappings is introduced and studied in a real Banach space. By using the auxiliary principle technique, new iterative algorithms for solving the generalized mixed equilibrium problems and bilevel generalized mixed equilibrium problems involving set-valued mappings are suggested and analyzed. Existence of solutions and strong convergence of the iterative sequences generated by the algorithms are proved under quite mild conditions. The behavior of the solution set of the generalized mixed equilibrium problems and bilevel generalized mixed equilibrium problems is also discussed. These results are new and generalize some recent results in this field.展开更多
Let K be a nonempty, closed and convex subset of a real reflexive Banach space E which has a uniformly Gateaux differentiable norm. Assume that every nonempty closed con- vex and bounded subset of K has the fixed poin...Let K be a nonempty, closed and convex subset of a real reflexive Banach space E which has a uniformly Gateaux differentiable norm. Assume that every nonempty closed con- vex and bounded subset of K has the fixed point property for nonexpansive mappings. Strong convergence theorems for approximation of a fixed point of Lipschitz pseudo-contractive map- pings which is also a unique solution to variational inequality problem involving φ-strongly pseudo-contractive mappings are proved. The results presented in this article can be applied to the study of fixed points of nonexpansive mappings, variational inequality problems, con- vex optimization problems, and split feasibility problems. Our result extends many recent important results.展开更多
Some strong convergence theorems of explicit composite iteration scheme for nonexpansive semi-groups in the framework of Banach spaces are established. Results presented in the paper not only extend and improve the co...Some strong convergence theorems of explicit composite iteration scheme for nonexpansive semi-groups in the framework of Banach spaces are established. Results presented in the paper not only extend and improve the corresponding results of ShiojiTakahashi, Suzuki, Xu and Aleyner-Reich, but also give a partially affirmative answer to the open questions raised by Suzuki and Xu.展开更多
In this paper, we first introduce a new class of generalized accretive operators named (H,η)-accretive in Banach space. By studying the properties of (H,η)-accretive, we extend the concept of resolvent operators...In this paper, we first introduce a new class of generalized accretive operators named (H,η)-accretive in Banach space. By studying the properties of (H,η)-accretive, we extend the concept of resolvent operators associated with m-accretive operators to the new (H,η)-accretive operators. In terms of the new resolvent operator technique, we prove the existence and uniqueness of solutions for this new system of variational inclusions. We also construct a new algorithm for approximating the solution of this system and discuss the convergence of the sequence of iterates generated by the algorithm.展开更多
The notion of “exceptional family of elements (EFE)” plays a very important role in solving complementarity prob- lems. It has been applied in finite dimensional spaces and Hilbert spaces by many authors. In this pa...The notion of “exceptional family of elements (EFE)” plays a very important role in solving complementarity prob- lems. It has been applied in finite dimensional spaces and Hilbert spaces by many authors. In this paper, by using the generalized projection defined by Alber, we extend this notion from Hilbert spaces to uniformly smooth and uniformly convex Banach spaces, and apply this extension to the study of nonlinear complementarity problems in Banach spaces.展开更多
This paper is an attempt to investigate systematically fixed points of weakly inward maps by using some basic results from differential equations in Banach spaces. By investigating the Poincare operators for such diff...This paper is an attempt to investigate systematically fixed points of weakly inward maps by using some basic results from differential equations in Banach spaces. By investigating the Poincare operators for such differential equations, we establish a fixed point index theory for two classes of weakly inward maps.展开更多
By using partial order method, the existence, uniqueness and iterative approximation of solutions for a class of systems of nonlinear operator equations in Banach space are discussed. The results obtained in this pape...By using partial order method, the existence, uniqueness and iterative approximation of solutions for a class of systems of nonlinear operator equations in Banach space are discussed. The results obtained in this paper extend and improve recent results.展开更多
Let C be a nonempty closed convex subset of a 2-uniformly convex and uniformly smooth Banach space E and {An}n∈N be a family of monotone and Lipschitz continuos mappings of C into E*. In this article, we consider th...Let C be a nonempty closed convex subset of a 2-uniformly convex and uniformly smooth Banach space E and {An}n∈N be a family of monotone and Lipschitz continuos mappings of C into E*. In this article, we consider the improved gradient method by the hybrid method in mathematical programming [i0] for solving the variational inequality problem for {AN} and prove strong convergence theorems. And we get several results which improve the well-known results in a real 2-uniformly convex and uniformly smooth Banach space and a real Hilbert space.展开更多
The perturbation problem of generalized inverse is studied. And some new stability characteristics of generalized inverses were presented. It was also proved that the stability characteristics of generalized inverses ...The perturbation problem of generalized inverse is studied. And some new stability characteristics of generalized inverses were presented. It was also proved that the stability characteristics of generalized inverses were independent of the choice of the generalized inverse. Based on this result, two sufficient and necessary conditions for the lower semi-continuity of generalized inverses as the set-valued mappings are given.展开更多
In the paper quasi_weak convergence is introduced in ordered Banach space and it is weaker than weak convergence. Besed on it, the fixed point existence theorem of increasing operator is proved without the suppose of ...In the paper quasi_weak convergence is introduced in ordered Banach space and it is weaker than weak convergence. Besed on it, the fixed point existence theorem of increasing operator is proved without the suppose of continuity and compactness in the sense of norm and weak compactness and is applied to the Hammerstein nonlinear intergal equation.展开更多
基金Supported by the NNSF of China(11971165)the Natural Science Foundation of Zhejiang Province(LY21A010003)。
文摘Let C be the familiar class of normalized close-to-convex functions in the unit disk.In[17],Koepf demonstrated that,as to a function■in the class C,■By applying this inequality,it can be proven that‖a3|-|a2‖≤1 for close-to-convex functions.Now we generalized the above conclusions to a subclass of close-to-starlike mappings defined on the unit ball of a complex Banach space.
文摘In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.
基金supported by the National Natural Science Foundation of China(11361070)the Natural Science Foundation of China Medical University,Taiwan
文摘The purpose of this paper is to introduce and study the split equality variational inclusion problems in the setting of Banach spaces. For solving this kind of problems, some new iterative algorithms are proposed. Under suitable conditions, some strong convergence theorems for the sequences generated by the proposed algorithm are proved. As applications, we shall utilize the results presented in the paper to study the split equality feasibility prob- lems in Banach spaces and the split equality equilibrium problem in Banach spaces. The results presented in the paper are new.
基金Supported by the Natural Science Foundation of the Educational Dept.of Zhejiang Province(20020868).
文摘This paper studies the convergence of the sequence defined by x0 ∈ C, xn+l =αnu+(1-αn)Txn, n=0, 1,2,..., where 0 ≤αn ≤ 1, limn→∞ αn = 0, ∑n=0^∞ αn = ∞, and T is a nonexpansive mapping from a nonempty closed convex subset C of a Banach space X into itself. The iterative sequence {xn} converges strongly to a fixed point of T in the case when X is a uniformly convex Banach space with a uniformly Gateaux differentiable norm or a uniformly smooth Banach space only. The results presented in this paper extend and improve some recent results.
文摘In this paper we prove the following Hajek Renyi inequality:Let 0<p≤1 ,then for any Banach space B , any L p integrable B valued random variable sequence {D n,n≥1} ,any real number sequence {b n,n≥1} with 0<b n↑∞ ,any integer n≥1 ,there exits a constant C=C p>0 (only depending on p ) such thatP( sup j≥nji=1D ib j≥ε)≤Cε -p (∞j=n+1E‖D j‖ pb p j+nj=1E‖D j‖ pb p n) In the other direction,we prove some strong laws of large numbers and the integrability of the maximal functions for B valued random variable sequences by using this inequality and the Hajeck Renyi inequality we have obtained recently.Some known results are extended and improved.
基金Supported by the National Science Foundation of Yunnan Province(2 0 0 2 A0 0 58M)
文摘In this paper,the approximation problems of Ishikawa iteration with errors of fixed points for asymptotically nonexpansive mappings and asymptotically pseudocontractive mappings in arbitrary real Banach spaces are investigated.Some necessary condition and sufficient condition for the convergence of iterative sequences are given respectively.The results thus extend and improve some recent corresponding results.
基金Supported by the Nature Science Foundation of China(11471091 and 11401143)
文摘In this paper, we investigate a new perturbation theorem for the Moore-Penrose metric generalized inverses of a bounded linear operator in Banach space. The main tool in this paper is "the generalized Neumann lemma" which is quite different from the method in [12] where "the generalized Banach lemma" was used. By the method of the perturba- tion analysis of bounded linear operators, we obtain an explicit perturbation theorem and three inequalities about error estimates for the Moore-Penrose metric generalized inverse of bounded linear operator under the generalized Neumann lemma and the concept of stable perturbations in Banach spaces.
基金The National Natural Science Foundation of China(No10271053)the Foundation of Nanjing University of Finance andEconomics (NoB0556)
文摘Let f be a C^1 map between two Banach spaces E and F. It has been proved that the concept of generalized regular points of f, which is a generalization of the notion of regular points of f, has some crucial applications in nonlinearity and global analysis. We characterize the generalized regular points of f using the three integer-valued (or infinite) indices M(x0), Mc(x0) and Mr(x0) at x0 ∈ E generated by f and by analyzing generalized inverses of bounded linear operators on Banach spaces, that is, iff '(x0) has a generalized inverse in the Banach space B(E, F) of all bounded linear operators on E into F and at least one of the indices M(x0), Mc(x0) and Mr(x0) is finite, then xo is a generalized regular point off if and only if the multi-index (M(x), Me(x), Mr(x)) is continuous at X0.
基金Supported in part by the Foundation of Education Ministry, Anhui Province, China (No: KJ2008A028)Educa-tion Ministry, Hubei Province, China (No: D20072202)
文摘In this paper, based on a basic result on condensing mappings satisfying the interior condition, some new fixed point theorems of the condensing mappings of this kind are obtained. As a result, the famous Altman's theorem, Roth's theorem and Petryshyn's theorem are extended to condensing mappings satisfying the interior condition.
文摘We study the single projection algorithm of Tseng for solving a variational inequality problem in a 2-uniformly convex Banach space.The underline cost function of the variational inequality is assumed to be monotone and Lipschitz continuous.A weak convergence result is obtained under reasonable assumptions on the variable step-sizes.We also give the strong convergence result for when the underline cost function is strongly monotone and Lipchitz continuous.For this strong convergence case,the proposed method does not require prior knowledge of the modulus of strong monotonicity and the Lipschitz constant of the cost function as input parameters,rather,the variable step-sizes are diminishing and non-summable.The asymptotic estimate of the convergence rate for the strong convergence case is also given.For completeness,we give another strong convergence result using the idea of Halpern iteration when the cost function is monotone and Lipschitz continuous and the variable step-sizes are bounded by the inverse of the Lipschitz constant of the cost function.Finally,we give an example of a contact problem where our proposed method can be applied.
基金supported by the Scientific Research Fun of Sichuan Normal University (11ZDL01)the Sichuan Province Leading Academic Discipline Project (SZD0406)
文摘A new class of bilcvel generalized mixed equilibrium problems involving setvalued mappings is introduced and studied in a real Banach space. By using the auxiliary principle technique, new iterative algorithms for solving the generalized mixed equilibrium problems and bilevel generalized mixed equilibrium problems involving set-valued mappings are suggested and analyzed. Existence of solutions and strong convergence of the iterative sequences generated by the algorithms are proved under quite mild conditions. The behavior of the solution set of the generalized mixed equilibrium problems and bilevel generalized mixed equilibrium problems is also discussed. These results are new and generalize some recent results in this field.
文摘Let K be a nonempty, closed and convex subset of a real reflexive Banach space E which has a uniformly Gateaux differentiable norm. Assume that every nonempty closed con- vex and bounded subset of K has the fixed point property for nonexpansive mappings. Strong convergence theorems for approximation of a fixed point of Lipschitz pseudo-contractive map- pings which is also a unique solution to variational inequality problem involving φ-strongly pseudo-contractive mappings are proved. The results presented in this article can be applied to the study of fixed points of nonexpansive mappings, variational inequality problems, con- vex optimization problems, and split feasibility problems. Our result extends many recent important results.
基金Project supported by the Natural Science Foundation of Sichuan Province of China(No.2005A132)
文摘Some strong convergence theorems of explicit composite iteration scheme for nonexpansive semi-groups in the framework of Banach spaces are established. Results presented in the paper not only extend and improve the corresponding results of ShiojiTakahashi, Suzuki, Xu and Aleyner-Reich, but also give a partially affirmative answer to the open questions raised by Suzuki and Xu.
文摘In this paper, we first introduce a new class of generalized accretive operators named (H,η)-accretive in Banach space. By studying the properties of (H,η)-accretive, we extend the concept of resolvent operators associated with m-accretive operators to the new (H,η)-accretive operators. In terms of the new resolvent operator technique, we prove the existence and uniqueness of solutions for this new system of variational inclusions. We also construct a new algorithm for approximating the solution of this system and discuss the convergence of the sequence of iterates generated by the algorithm.
文摘The notion of “exceptional family of elements (EFE)” plays a very important role in solving complementarity prob- lems. It has been applied in finite dimensional spaces and Hilbert spaces by many authors. In this paper, by using the generalized projection defined by Alber, we extend this notion from Hilbert spaces to uniformly smooth and uniformly convex Banach spaces, and apply this extension to the study of nonlinear complementarity problems in Banach spaces.
文摘This paper is an attempt to investigate systematically fixed points of weakly inward maps by using some basic results from differential equations in Banach spaces. By investigating the Poincare operators for such differential equations, we establish a fixed point index theory for two classes of weakly inward maps.
文摘By using partial order method, the existence, uniqueness and iterative approximation of solutions for a class of systems of nonlinear operator equations in Banach space are discussed. The results obtained in this paper extend and improve recent results.
文摘Let C be a nonempty closed convex subset of a 2-uniformly convex and uniformly smooth Banach space E and {An}n∈N be a family of monotone and Lipschitz continuos mappings of C into E*. In this article, we consider the improved gradient method by the hybrid method in mathematical programming [i0] for solving the variational inequality problem for {AN} and prove strong convergence theorems. And we get several results which improve the well-known results in a real 2-uniformly convex and uniformly smooth Banach space and a real Hilbert space.
基金Project supported by the National Natural Science Foundation of China (Nos. 10571150 and 10271053)
文摘The perturbation problem of generalized inverse is studied. And some new stability characteristics of generalized inverses were presented. It was also proved that the stability characteristics of generalized inverses were independent of the choice of the generalized inverse. Based on this result, two sufficient and necessary conditions for the lower semi-continuity of generalized inverses as the set-valued mappings are given.
文摘In the paper quasi_weak convergence is introduced in ordered Banach space and it is weaker than weak convergence. Besed on it, the fixed point existence theorem of increasing operator is proved without the suppose of continuity and compactness in the sense of norm and weak compactness and is applied to the Hammerstein nonlinear intergal equation.