Banana streak virus (BSV) and Sugarcane bacilliform virus (SCBV) are two badnaviruses commonly found in all banana growing areas of the world. It is a threat to the production and improvement of Musa germplasm. In Bur...Banana streak virus (BSV) and Sugarcane bacilliform virus (SCBV) are two badnaviruses commonly found in all banana growing areas of the world. It is a threat to the production and improvement of Musa germplasm. In Burkina Faso, the presence of badnaviruses was reported in banana producing regions. The objective of this study was to determine the prevalence of BSV and SCBV in banana production areas of Burkina Faso. A survey followed by a symptomatologic study was conducted in banana plantations in 27 localities of the nine main banana producing regions from July to October 2018 and September to December 2020. In all, 251 leaf samples were collected and analysed for BSV and SCBV infection by Indirect Antigen Coated Plate Assay-ELISA followed by amplification of the RT/RNase H region using Polymerase chain reaction with Badna FP/RP and SCBV F/R primers, respectively. A variety of symptoms were observed on almost all plant organs which were revealed due to BSV by symptomatologic study. The results of serological and molecular diagnosis revealed a high overall prevalence of BSV in 80.48% of the samples tested. BSV was distributed in seven survey regions out of nine with prevalence ranging from 10% to 100% in North, Centre, Centre West, Hauts Bassins, Cascades, Centre East and Boucle of Mouhoun regions. Very low prevalence was recorded for SCBV in Cascades and East Centre region with 4.35 and 12.5%, respectively. Species detection using specific primers to each species revealed three main species: Banana streak Obino l’ewaï virus (BSOLV), Goldfinger virus (BSGFV) and Imové virus (BSIMV) in the samples tested, respectively in the proportions of 23%, 8% and 0.8%. Co-infection between BSV species was also detected.展开更多
Drought stress has become more common in recent years as a result of climate change impacts on the production of banana crops and other fruit trees.The growth and productivity of Musa spp are severely impacted by the ...Drought stress has become more common in recent years as a result of climate change impacts on the production of banana crops and other fruit trees.The growth and productivity of Musa spp are severely impacted by the gradual degradation of water resources and the erratic distribution pattern of annual precipitation amount.The aim of the work includes increased drought tolerance in light of water scarcity in the world as a result of the bananas’being gluttonous for water needs.This investigation was carried out from 2019 to 2020 to study the effect of potassium silicate on morphological growth and biochemical parameters of Musa acuminata L under drought stress by PEG.As a result,drought stress reduced the morphological characteristics such as shoots number,shoot length,roots number,and survival percentage and biochemical characteristics such as chlorophyll a,b,carotenoids,stomatal status,and RWC.While proline content increased in the leaf of M.acuminata L.Media complemented with K2SiO3(2 to 6 mM)either individually or in combination with PEG led to an improvement in all morphological and biochemical characteristics.The activities of CAT,POD,and PPO enzymes increased significantly compared to control.Furthermore,the lowest PPO,CAT,and POD activity were achieved.Additionally,K2SiO3 treatments under drought stress successfully enhanced the leaf stomatal behavior.Our results suggest that K2SiO3 can help to maintain plant integrity in the tested cultivar under drought stress.展开更多
[Objectives]The study was to identify the casual agent of freckle disease on Cavendish banana in Hainan Province,China.[Methods]Fungal isolates were isolated from affected leaf tissues and identified by the morphologi...[Objectives]The study was to identify the casual agent of freckle disease on Cavendish banana in Hainan Province,China.[Methods]Fungal isolates were isolated from affected leaf tissues and identified by the morphological features,molecular identification and pathogenicity test.[Results]The fungus isolated from affected leaf tissues was identified as Phyllosticta capitalensis based on the morphological properties of the colony and spore,coupled with sequence analyses of the internal transcribed spacer(ITS)region and the large subunit(LSU)rDNA gene.Koch s postulates were fulfilled by successfully re-isolating the pathogen from the artificial inoculated leaves.[Conclusions]P.capitalensis is a new pathogen responsible for Cavendish banana freckle disease in Hainan.展开更多
Plantain banana is an important cash crop that serves as stable food for millions of people around the world and contributes to income generation. Indeed, they provide a major staple food crop for millions of people a...Plantain banana is an important cash crop that serves as stable food for millions of people around the world and contributes to income generation. Indeed, they provide a major staple food crop for millions of people and play an important role in the social fabric of many rural communities. Plantain banana cultivation encounters major problem of seedlings unavailability that are essential for the creation of new plantations, as well as parasitic constraints. Mycosphaerella fijiensis is the main pathogen attack constraints of banana plant responsible of black Sigatoka disease, and viruses, which can severely reduce the photosynthetic leaf area, leading to banana production losses of more than 80% in plantations with soil fertility problems. The repeated use of synthetic input is the origin of contamination to the environment, different pollution sources of plants and human health, as well as resistance to some strains of pathogens and plant fertilization problems over time. Recent works carried out in nursery have shown that vivoplants of plantains treated with biostimulants based on natural products notably Tithonia diversifolia biopromote good growth and less susceptibility to M. fijiensis. Indeed, an increase in agromorphological characteristics, good accumulation of growth and defense biomarkers was also observed. In this context, Tithonia diversifolia is shown to be involved in the stimulatory effect mechanism of growth promotion and defensive reaction of plantain vivoplants against various pathogens and it is suggested to be acting as a vital stimulator. This article reviews the current state of knowledge on plantain banana cultivation constraints and on the potential of Tithonia diversifolia in relation with its different stimulatory effects on plantain vivoplants.展开更多
Banana is a significant crop,and three banana leaf diseases,including Sigatoka,Cordana and Pestalotiopsis,have the potential to have a serious impact on banana production.Existing studies are insufficient to provide a...Banana is a significant crop,and three banana leaf diseases,including Sigatoka,Cordana and Pestalotiopsis,have the potential to have a serious impact on banana production.Existing studies are insufficient to provide a reliable method for accurately identifying banana leaf diseases.Therefore,this paper proposes a novel method to identify banana leaf diseases.First,a new algorithm called K-scale VisuShrink algorithm(KVA)is proposed to denoise banana leaf images.The proposed algorithm introduces a new decomposition scale K based on the semi-soft and middle course thresholds,the ideal threshold solution is obtained and substituted with the newly established threshold function to obtain a less noisy banana leaf image.Then,this paper proposes a novel network for image identification called Ghost ResNeSt-Attention RReLU-Swish Net(GR-ARNet)based on Resnet50.In this,the Ghost Module is implemented to improve the network's effectiveness in extracting deep feature information on banana leaf diseases and the identification speed;the ResNeSt Module adjusts the weight of each channel,increasing the ability of banana disease feature extraction and effectively reducing the error rate of similar disease identification;the model's computational speed is increased using the hybrid activation function of RReLU and Swish.Our model achieves an average accuracy of 96.98%and a precision of 89.31%applied to 13,021 images,demonstrating that the proposed method can effectively identify banana leaf diseases.展开更多
The development of bio-sourced materials is essential to ensuring sustainable construction;it is considered a locomotive of the green economy.Furthermore,it is an abundant material in our country,to which very little ...The development of bio-sourced materials is essential to ensuring sustainable construction;it is considered a locomotive of the green economy.Furthermore,it is an abundant material in our country,to which very little attention is being given.This work aims to valorize the waste of the trunks of banana trees to be used in construction.Firstly,the physicochemical properties of the fiber,such as the percentage of crystallization and its morphology,have been determined by X-ray diffraction tests and scanning electron microscopy to confirm the potential and the impact of the mode of drying on the quality of the banana fibers,with the purpose to promote the use of this material in construction.Secondly,the results obtained with the gypsum matrix allowed us to note a preponderant improvement in the composite’s thermal properties thanks to the variation of the banana fiber additive.Thirdly,the impact of the nature of the banana fiber distribution(either fiber mixed in matrix or fiber series model)on the flexural and compressive strengths of the composites was studied.The results obtained indicate that the insulation gain reaches up to 40%.It depends on the volume fraction and type of distribution of the banana fibers.However,the thermal inertia of the composites developed,represented by thermal diffusivity and thermal effusivity,was studied.Results indicate a gain of 40%and 25%,respectively,in terms of thermal diffusivity and thermal effusivity of the developed composites compared to plaster alone.Concerning the mechanical properties,the flexural strength depends on the percentage of the volume fraction of banana fibers used,and it can reach 20%more than the flexural strength of plaster;nevertheless,there is a significant loss in terms of the compressive strength of the studied composites.The results obtained are confirmed by the microstructure of the fiber banana.In fact,the morphology of the banana fibers was improved by the drying process.It reduces the amorphous area and improves the cellulosic crystalline surfaces,which assures good adhesion between the fiber and the matrix plaster.Finally,the dimensionless coefficient analysis was done to judge the optimal proportion of the banana fiber additive and to recommend its use even on false ceilings or walls.展开更多
[Objectives]This study was conducted to clarify the biological characteristics of the pathogen Phyllosticta capitalensis,the causal agent of freckle disease on Cavendish banana in Hainan Province,China.[Methods]The im...[Objectives]This study was conducted to clarify the biological characteristics of the pathogen Phyllosticta capitalensis,the causal agent of freckle disease on Cavendish banana in Hainan Province,China.[Methods]The impact of various nutritional and environmental factors,including media,carbon sources,nitrogen sources,temperature,pH and light on the growth and sporulation of P.capitalensis was assessed using two distinct methods:mycelium growth rate and blood counting chamber.[Results]The mycelial growth and sporulation of P.capitalensis on different media exhibited notable differences.The use of banana leaf extract dextrose agar(BLEAD)and carrot agar(CA)was observed to facilitate rapid mycelial growth.The potato dextrose agar(PDA)and potato sucrose agar(PSA)were conducive to the production of conidia.The utilization of distinct carbon and nitrogen sources exerted a pronounced influence on the growth of P.capitalensis.Maltose,dextrose,fructose,and casein acid hydrolysate were the preferred substrates for mycelial growth.The tested carbon and nitrogen sources did not significantly stimulate conidial production,whereas dextrose and NaNO 3 were found to favor sporulation.The optimal temperature for mycelial growth and conidial production was determined to be 28 and 32℃,respectively.No mycelial growth was observed at 5℃.Active mycelial growth was observed at pH 6-10,with pH 6-7 being particularly conducive to sporulation.Complete darkness was conducive to mycelial growth and sporulation.[Conclusions]It is recommended that BLEDA and PDA should be incubated at 28℃for 14 d in the dark for the purpose of mycelial growth and sporulation of P.capitalensis,respectively.展开更多
This study investigates the nitrogen (N), phosphorous (P), and potassium (K) contents in raw biomasses of Camellia sinensis, Gliricidia sepium, and Musa acuminata. Therein, the highest N and P content was seen in Came...This study investigates the nitrogen (N), phosphorous (P), and potassium (K) contents in raw biomasses of Camellia sinensis, Gliricidia sepium, and Musa acuminata. Therein, the highest N and P content was seen in Camellia sinensis 116.80 ± 0.08 mg and 66.00 ± 0.14 mg respectively. The highest K content (106.80 ± 0.04 mg) was observed in Musa acuminata. Next, all three types of plant materials were allowed to decompose in water for 3 weeks, and a sample from each was analyzed for NPK after the 1st, 2nd, and 3rd week during decomposition. A significant increase in the release of N, P, and K by the Camellia sinensis to water (P Musa acuminate were not significantly changed (P > 0.05) over time. The ratio for N:P:K was calculated for raw biomass samples and decomposed samples to find the best fitting N:P:K ratio to apply to young tea plants as organic fertilizers. In addition to that, the microbial insight of these organic compounds was analyzed by observing how microbial population increased with decomposition by the enumeration of the total microbial count. A considerable increment in total microbial count was observed up to 3.28 × 10<sup>6</sup>, 1.21 × 10<sup>10</sup>, 2.18 × 10<sup>8</sup>, and 6.49 × 10<sup>7</sup> CFU/ml for Camellia sinensis, Gliricidia sepium, Musa accuminata (leaves), and Musa accuminata (trunk) respectively. The presence of phosphate solubilizing bacteria (PSB) and nitrogen solubilizing bacteria (NSB) throughout the decomposition period was confirmed by their growth on NBRIP and a modified nutrient medium that was specifically designed for the identification of ammonifiers respectively. Prepared fertilizer samples were applied to young tea plants that were grown in the Mawanella area in Sri Lanka (7°15'12.42"N 80°26'47.62"E) and according to the results, it is clear that fertilizer mixture 1 (N:P:K, 10:5:10, tea dust + Gliricidia + banana trunk) and fertilizer mixture 2 (N:P:K, 10:5:10, tea dust + Gliricidia + banana leaves) has the potential to increase the growth of young tea plants.展开更多
The study has been aimed to evaluate and compare phytochemical content and the antioxidant activity in peel extracts of nine local varieties of banana, i.e. Musa sapientum species. Ethanolic extract of peels of these ...The study has been aimed to evaluate and compare phytochemical content and the antioxidant activity in peel extracts of nine local varieties of banana, i.e. Musa sapientum species. Ethanolic extract of peels of these varieties were subjected to in vitro free radical scavenging assays like DPPH, ABTS and lipid peroxidation inhibition assay. Total antioxidant capacity assay to confirm the antioxidant potential and phytochemical content such as total phenols, flavonoids were also determined. The results obtained were analyzed statistically by ANOVA and DMRT analysis. The peel ex- tracts of all the nine varieties of banana exhibited significant antioxidant and phytochemical activities with Musa spp – Blueggoe (Monthan) - AAB and Musa spp – Rasthali – AAB showing highest free radical scavenging activity and Musa spp – Karpooravalli – ABB, Musa spp – Rasthali – AAB, Musa spp - Ney Poovan (Kadali) – AB and Musa spp – Mysore (Poovan) – AAB having highest phytochemical content. The study suggests that peel extracts of these banana varieties could be useful to combat free radical mediated diseases.展开更多
Banana (Musa sp.) is a popular and important crop among many communities in East Africa. Banana production is however threatened by the wide-spread banana streak disease (BSD), caused by Banana streak virus (BSV). The...Banana (Musa sp.) is a popular and important crop among many communities in East Africa. Banana production is however threatened by the wide-spread banana streak disease (BSD), caused by Banana streak virus (BSV). The success of BSV management is inherently coupled to the availability of a sensitive indexing method. In this study, the sensitivity of three BSV detection techniques: rolling circle amplification (RCA), immunocapture PCR (with degenerate and Gold finger primers) and standard PCR was compared. A set of 32 BSD-asymptomatic samples were used to compare the techniques. Analysis of variance (ANOVA) for comparison of the four techniques showed that there were significant differences (P Musa tissues for BSV. This study unveils a more reliable BSV detection method, a need that has remained unaddressed for a long while.展开更多
Raw Banana Stalk (RBS), Acid Activated Banana Stalk (AABS) and Base Activated Banana Stalk (BABS) prepared from banana stalk were used as biosorbents to remove Lead(II) from aqueous solution. The biosorbents were char...Raw Banana Stalk (RBS), Acid Activated Banana Stalk (AABS) and Base Activated Banana Stalk (BABS) prepared from banana stalk were used as biosorbents to remove Lead(II) from aqueous solution. The biosorbents were characterised using proximate analysis and Fourier Transform Infrared (FTIR) spectroscopy. Pb(II) of 1000 mg/L concentration was prepared from Pb(NO3)2 salt and other concentrations were obtained from this stock through serial dilution. Effects of adsorbent dose, temperature, initial metal concentration, contact time and pH on the percentage Pb(II) removal were evaluated. The Pb(II) concentrations in the solutions were analysed using Atomic Absorption Spectrophotometer. Kinetic, isotherm and thermodynamic parameters were determined. FTIR spectroscopy showed that RBS, AABS and BABS are rich in carboxyl, hydroxyl and phenolic functional groups. At an equilibrium time of 180 minutes, the percentage Pb(II) removal was 63.97%, 96.13% and 66.90% for RBS, AABS and BABS, respectively. Pseudo-second order kinetics best described the process with R2 (0.95, 0.98, 0.97) for RBS, AABS and BABS, respectively. Langmuir isotherm (AABS) has the maximum adsorption capacity (qmax) of 13.53 mg/g and R2 (0.99). Thermodynamic parameters obtained were △G0 (?18.75 kJ/mol), △H0 (12.63 kJ/mol), △S0 (0.05 kJ/mol·K) and Ea (4.37 kJ/mol). Banana stalk has viable characteristics for preparing biosorbents. Acid activated banana biosorbent is more efficient for removal of lead ions from its aqueous solution.展开更多
Soy protein isolate and egg white protein were added to cassava-banana gluten-free pasta and the effects on the nutritional quality,digestibility properties,protein digestibility corrected amino acid(PDCAA),and sensor...Soy protein isolate and egg white protein were added to cassava-banana gluten-free pasta and the effects on the nutritional quality,digestibility properties,protein digestibility corrected amino acid(PDCAA),and sensory acceptance of the pasta was observed.Banana-cassava composite flour(75:25)was blended with soy protein isolate or egg white protein at the following rates:0,5,10,and 15 g/100 g flour.Cooked pasta samples were analysed for total phenolic content(TPC),antioxidant activity,amino acid profiles,protein content,starch digestibility,protein digestibility and protein digestibility corrected amino acid score(PDCAAS).Addition of both proteins decreased starch digestibility,increased protein digestibility,improved the balance of the amino acid profile,and PDCAAS whereas only soy protein isolate enhanced the TPC and antioxidant capacity of the banana-cassava pasta.An egg white protein-fortified banana-cassava pasta had better customer acceptance and purchase intent than soy protein isolate inclusion.展开更多
Fusarium species were reported to produce biofilms.Biofilms are superficial societies of microbes bounded and endangered by being situated or taking place outside a cell or cells.The most destructive fungal diseases c...Fusarium species were reported to produce biofilms.Biofilms are superficial societies of microbes bounded and endangered by being situated or taking place outside a cell or cells.The most destructive fungal diseases caused by phytopathogens are as a result of biofilms formation.Fusarium wilt of banana(Panama disease)is caused by a soil-borne pathogen called Fusarium oxysporum f.sp.cubense.Fusarium oxysporum occurs in a form of a species complex(FOSC)which encompasses a crowd of strains.Horizontal genetic factor transfer may donate to the observed assortment in pathogenic strains,while sexual reproduction is unknown in the FOSC.Fusarium wilt is a notorious disease on several crops worldwide.Yield loss caused by this pathogen is huge,and significant to destroy crop yields annually,thereby affecting the producer countries in various continents of the world.The disease is also resistant to various synthetic chemical fungicides.However,excessive use of synthetic fungicides during disease control could be lethal to humans,animals,and plants.This calls for alternative eco-friendly management of this disease by targeting the biofilms formation and finally suppressing this devastating phytopathogen.In this review,we,therefore,described the damage caused by Fusarium wilt disease,the concept of filamentous fungal biofilms,classical control strategies,sustainable disease control strategies using essential oils,and prevention and control of vegetables Fusarium wilt diseases.展开更多
Banana is one of the most important crops in tropical and subtropical regions of China. Fenjiao( Musa Spp. ABB,Pisang Awak subgroup) has been grown by small scale famers because of its stable market price and better s...Banana is one of the most important crops in tropical and subtropical regions of China. Fenjiao( Musa Spp. ABB,Pisang Awak subgroup) has been grown by small scale famers because of its stable market price and better sugar-acid blend. However,the traditional Fenjiao variety is susceptible to banana Fusarium wilt,has a high plant height( over 5. 0 m),and farmers lack large-scale planting techniques.Based on the traditional Fenjiao variety,we selected‘Refen 1’variety through mutagenesis technology,which has low temperature resistance,suitable to marginal soils and relatively low plant height( 3. 2-4. 0 m). This paper mainly introduces the major techniques of propagation,cultivation,and post-harvest stages of‘Refen 1’banana,including the selection of explant materials,treatment,disinfection,initial culture,nursery hardening of in vitro-produced banana plants,and transplant of tissue culture seedlings. The major points of the cultivation technology include banana plantation selection and preparation,planting methods,irrigation and fertilizer management,pruning and retaining,and prevention and control of plant diseases and insect pests.展开更多
Banana flowers contain various bioactive components, including several antioxidants with anti-inflammatory effects. However, it is unclear whether they can reduce and prevent hair loss. This study examines the effect ...Banana flowers contain various bioactive components, including several antioxidants with anti-inflammatory effects. However, it is unclear whether they can reduce and prevent hair loss. This study examines the effect of banana flower extracts on preventing hair loss and strengthening hair roots. The banana flower extract(HappyAngel^(■))was used to treat human hair follicle dermal papilla cells(HFDPCs)and the expression of reactive oxygen species(ROS), dihydrotestosterone(DHT), and hair-related genes(SRD5A1, SRD5A2, AR, and KROX20)were monitored. Fifty subjects were divided into a placebo group and a banana flower group. The experimental group consumed banana flower extract daily for twelve weeks and then underwent hair testing, hair-related genes analysis, collection of hair loss, and questionnaires. The results showed that the banana flower extract significantly increased hair cell growth and decreased the expression of ROS, DHT, and hair follicle growth inhibition-related SRD5A1, SRD5A2, and AR genes, and significantly increased the expression of hair growth-related KROX20 gene in HFDPCs. Consuming banana flower extract for twelve weeks increased the hair root diameter and reduced hair loss and scalp redness compared to the placebo group. Thus, banana flower extract(HappyAngel^(■))can stimulate hair growth and inhibit the activation of hair loss genes.展开更多
Dry season water application and conservation were studied for two years in Ado Ekiti to evaluate their effects on the performance of plantain Musa spp.. The treatments were: morning watering (MW), evening watering...Dry season water application and conservation were studied for two years in Ado Ekiti to evaluate their effects on the performance of plantain Musa spp.. The treatments were: morning watering (MW), evening watering (EW), morning and evening watering (MEW), morning watering + mulch (MW + ML), evening watering + mulch (EW + ML), morning and evening watering + mulch (MEW + ML), mulch (ML) and Control. Height and girth increase, number of green leaves, yield and yield parameters were the highest in the MEW + ML which were identical to those of Evening watering + mulch and morning + evening watering. The evening or morning watering with mulch was identical but showed better performance than those without mulch. The mulched plants and the control showed the least performance. It is therefore recommended that proper water conservation in plantain plantation will improve banana survival during dry season and subsequently increase yield in the study area.展开更多
Despite the nutritional, economic and medicinal values of banana plant, independent of the region and production system is confronted with some diseases such as the fungi disease. These fungal diseases are responsible...Despite the nutritional, economic and medicinal values of banana plant, independent of the region and production system is confronted with some diseases such as the fungi disease. These fungal diseases are responsible for the low yields. The objective of this study was to improve the sanitary state of banana plant. To achieve this objective, fungi associated with banana leaves were isolated on Potato Dextrose Agar (PDA) culture medium and their identification was done on the basis of morphological and microscopic characteristics using reference documents. Antifungal activity of Allium ampeloprasum and Cymbopogon citratus extracts were evaluated in vitro on agar medium on the development of Pseudocercospora fijiensis, P. musicola and Pestalopsis sp. The results showed that banana plant harbours a diversity of fungal species, the most frequent being P. fijiensis (51.58%), Pestalopsis sp. (15.47%) and P. musicola (12.03%). Aqueous extracts of C. citratus at the concentration of 15 mg/ml, inhibited 100% of the radial growth of P. fijiensis and Pestalopsis sp with a fungitoxic activity. Similarly, ethanolic extract A. ampeloprasum inhibited at 100% the radial growth of Pestalopsis sp. This antifungal activity was fungistatic. These results suggest that the aqueous and ethanol extracts of the tested plants could be used as alternatives to chemical products in the fight against banana diseases especially Sigatoka. Hence further studies need to be undertaken to isolate the active compounds from these extracts with fungicidal potential.展开更多
Mitogen-activated protein kinase(MAPK/MPK)cascades play crucial parts in plant growth,development processes,immune ability,and stress responses;however,the regulatory mechanism by which MAPK affects fruit ripening rem...Mitogen-activated protein kinase(MAPK/MPK)cascades play crucial parts in plant growth,development processes,immune ability,and stress responses;however,the regulatory mechanism by which MAPK affects fruit ripening remains largely unexplored.Here,we reported that MaMPK14 cooperated with MaMYB4 to mediate postharvest banana fruit ripening.Transient overexpression of individual MaMPK14 and MaMYB4 in banana fruit delayed fruit ripening,confirming the negative roles in the ripening.The ripening negative regulator MaMYB4 could repress the transcription of genes associated with ethylene biosynthesis and fruit softening,such as MaACS1,MaXTH5,MaPG3,and MaEXPA15.Furthermore,MaMPK14 phosphorylated MaMYB4 at Ser160 via a direct interaction.Mutation at Ser160 of MaMYB4 reduced its interaction with MaMPK14 but did not affect its subcellular localization.Importantly,phosphorylation of MaMYB4 by MaMPK14 enhanced the MaMYB4-mediated transcriptional inhibition,binding strength,protein stability,and the repression of fruit ripening.Taken together,our results delineated the regulation pathway of MAPK module during banana fruit ripening,which involved the phosphorylation modification of MaMYB4 mediated by MaMPK14.展开更多
Badnaviruses are serious plant pararetroviruses affecting banana and causes serious economic losses to banana production worldwide. This study aims to examine the variability of BSV and SCBV nature infecting banana in...Badnaviruses are serious plant pararetroviruses affecting banana and causes serious economic losses to banana production worldwide. This study aims to examine the variability of BSV and SCBV nature infecting banana in Burkina Faso. Polymerase Chain Reaction (PCR) used the Badna FP/RP specific primers for the RT/RNase H regions present in badnaviruses. The PCR yielded about 579 bp amplicons from banana infected by BSV and SCBV. The 38 BSV isolates recorded low nucleotide identity ranging from 58.9% - 98.1%. Based on percentage nucleotide sequence identity and phylogenetic analyse, BSV isolates were categorized into four groups: 1, 2, 3 and 4. Group 4 shared 76.9% - 100% identity with BSOL species. However, Groups 1 and 3 recorded a low identity ranging, from 76.8% - 79.2%, 68.8% - 79.7% with BSCV, and 72.8% - 79.0% between Group 2 and BSOLV. Groups 1, 2 and 3 were assigned to a potentially new BSV species. The two SCBV isolates recorded a low nucleotide identity of 68% among themselves indicating high diversity. In addition, SCBV_Cd and SCBV_CE showed high nucleotide identity 91.3% and 58.7% with SCBV_C and SCBV, when they were compared to all published SCBV genotypes. In addition, phylogenetic analysis revealed the segregation of SCBV isolates into two genotypes, SCBV_Cd in C and SCBV_CE segregated in a new genotype namely Z. Recombination analyses showed weak signatures of recombination among some of the BSV and SCBV sequences.展开更多
Only 42% of Uganda’s population has access to electricity. The population continues to use firewood and charcoal as a source of energy, which leads to depletion of forests thus to climate change. The purpose of this ...Only 42% of Uganda’s population has access to electricity. The population continues to use firewood and charcoal as a source of energy, which leads to depletion of forests thus to climate change. The purpose of this study was to assess the potential of biogas production from jackfruit waste, banana peels, and pineapple peels when co-digested with cow dung as an alternative energy source. Substrates for each waste were co-digested with varying proportions (0%, 25%, and 50%) of cow dung using laboratory-scale 250 mL anaerobic digestors. The total biogas generation for jackfruit waste, banana peels, and pineapple peels after 30 days of anaerobic digestion was 82.3, 189, and 262 mL, respectively. When jack fruit waste, pineapple peels and banana peels were co-digested with 25% cow dung, the total amount of biogas produced increased by a factor of two and three, respectively. However, 50% of cow dung only significantly (p ≤ 0.05) improved for jack fruit waste by two folds. Therefore, the results indicated that jackfruit waste, banana and pineapple peels can be used for biogas production to augment energy supply. .展开更多
文摘Banana streak virus (BSV) and Sugarcane bacilliform virus (SCBV) are two badnaviruses commonly found in all banana growing areas of the world. It is a threat to the production and improvement of Musa germplasm. In Burkina Faso, the presence of badnaviruses was reported in banana producing regions. The objective of this study was to determine the prevalence of BSV and SCBV in banana production areas of Burkina Faso. A survey followed by a symptomatologic study was conducted in banana plantations in 27 localities of the nine main banana producing regions from July to October 2018 and September to December 2020. In all, 251 leaf samples were collected and analysed for BSV and SCBV infection by Indirect Antigen Coated Plate Assay-ELISA followed by amplification of the RT/RNase H region using Polymerase chain reaction with Badna FP/RP and SCBV F/R primers, respectively. A variety of symptoms were observed on almost all plant organs which were revealed due to BSV by symptomatologic study. The results of serological and molecular diagnosis revealed a high overall prevalence of BSV in 80.48% of the samples tested. BSV was distributed in seven survey regions out of nine with prevalence ranging from 10% to 100% in North, Centre, Centre West, Hauts Bassins, Cascades, Centre East and Boucle of Mouhoun regions. Very low prevalence was recorded for SCBV in Cascades and East Centre region with 4.35 and 12.5%, respectively. Species detection using specific primers to each species revealed three main species: Banana streak Obino l’ewaï virus (BSOLV), Goldfinger virus (BSGFV) and Imové virus (BSIMV) in the samples tested, respectively in the proportions of 23%, 8% and 0.8%. Co-infection between BSV species was also detected.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project No.(PNURSP2022R188)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia。
文摘Drought stress has become more common in recent years as a result of climate change impacts on the production of banana crops and other fruit trees.The growth and productivity of Musa spp are severely impacted by the gradual degradation of water resources and the erratic distribution pattern of annual precipitation amount.The aim of the work includes increased drought tolerance in light of water scarcity in the world as a result of the bananas’being gluttonous for water needs.This investigation was carried out from 2019 to 2020 to study the effect of potassium silicate on morphological growth and biochemical parameters of Musa acuminata L under drought stress by PEG.As a result,drought stress reduced the morphological characteristics such as shoots number,shoot length,roots number,and survival percentage and biochemical characteristics such as chlorophyll a,b,carotenoids,stomatal status,and RWC.While proline content increased in the leaf of M.acuminata L.Media complemented with K2SiO3(2 to 6 mM)either individually or in combination with PEG led to an improvement in all morphological and biochemical characteristics.The activities of CAT,POD,and PPO enzymes increased significantly compared to control.Furthermore,the lowest PPO,CAT,and POD activity were achieved.Additionally,K2SiO3 treatments under drought stress successfully enhanced the leaf stomatal behavior.Our results suggest that K2SiO3 can help to maintain plant integrity in the tested cultivar under drought stress.
基金Supported by Hainan Provincial Natural Science Foundation of China(322MS114).
文摘[Objectives]The study was to identify the casual agent of freckle disease on Cavendish banana in Hainan Province,China.[Methods]Fungal isolates were isolated from affected leaf tissues and identified by the morphological features,molecular identification and pathogenicity test.[Results]The fungus isolated from affected leaf tissues was identified as Phyllosticta capitalensis based on the morphological properties of the colony and spore,coupled with sequence analyses of the internal transcribed spacer(ITS)region and the large subunit(LSU)rDNA gene.Koch s postulates were fulfilled by successfully re-isolating the pathogen from the artificial inoculated leaves.[Conclusions]P.capitalensis is a new pathogen responsible for Cavendish banana freckle disease in Hainan.
文摘Plantain banana is an important cash crop that serves as stable food for millions of people around the world and contributes to income generation. Indeed, they provide a major staple food crop for millions of people and play an important role in the social fabric of many rural communities. Plantain banana cultivation encounters major problem of seedlings unavailability that are essential for the creation of new plantations, as well as parasitic constraints. Mycosphaerella fijiensis is the main pathogen attack constraints of banana plant responsible of black Sigatoka disease, and viruses, which can severely reduce the photosynthetic leaf area, leading to banana production losses of more than 80% in plantations with soil fertility problems. The repeated use of synthetic input is the origin of contamination to the environment, different pollution sources of plants and human health, as well as resistance to some strains of pathogens and plant fertilization problems over time. Recent works carried out in nursery have shown that vivoplants of plantains treated with biostimulants based on natural products notably Tithonia diversifolia biopromote good growth and less susceptibility to M. fijiensis. Indeed, an increase in agromorphological characteristics, good accumulation of growth and defense biomarkers was also observed. In this context, Tithonia diversifolia is shown to be involved in the stimulatory effect mechanism of growth promotion and defensive reaction of plantain vivoplants against various pathogens and it is suggested to be acting as a vital stimulator. This article reviews the current state of knowledge on plantain banana cultivation constraints and on the potential of Tithonia diversifolia in relation with its different stimulatory effects on plantain vivoplants.
基金supported by the Changsha Municipal Natural Science Foundation,China(kq2014160)in part by the Key Projects of Department of Education of Hunan Province,China(21A0179)+1 种基金the Hunan Key Laboratory of Intelligent Logistics Technology,China(2019TP1015)the National Natural Science Foundation of China(61902436)。
文摘Banana is a significant crop,and three banana leaf diseases,including Sigatoka,Cordana and Pestalotiopsis,have the potential to have a serious impact on banana production.Existing studies are insufficient to provide a reliable method for accurately identifying banana leaf diseases.Therefore,this paper proposes a novel method to identify banana leaf diseases.First,a new algorithm called K-scale VisuShrink algorithm(KVA)is proposed to denoise banana leaf images.The proposed algorithm introduces a new decomposition scale K based on the semi-soft and middle course thresholds,the ideal threshold solution is obtained and substituted with the newly established threshold function to obtain a less noisy banana leaf image.Then,this paper proposes a novel network for image identification called Ghost ResNeSt-Attention RReLU-Swish Net(GR-ARNet)based on Resnet50.In this,the Ghost Module is implemented to improve the network's effectiveness in extracting deep feature information on banana leaf diseases and the identification speed;the ResNeSt Module adjusts the weight of each channel,increasing the ability of banana disease feature extraction and effectively reducing the error rate of similar disease identification;the model's computational speed is increased using the hybrid activation function of RReLU and Swish.Our model achieves an average accuracy of 96.98%and a precision of 89.31%applied to 13,021 images,demonstrating that the proposed method can effectively identify banana leaf diseases.
文摘The development of bio-sourced materials is essential to ensuring sustainable construction;it is considered a locomotive of the green economy.Furthermore,it is an abundant material in our country,to which very little attention is being given.This work aims to valorize the waste of the trunks of banana trees to be used in construction.Firstly,the physicochemical properties of the fiber,such as the percentage of crystallization and its morphology,have been determined by X-ray diffraction tests and scanning electron microscopy to confirm the potential and the impact of the mode of drying on the quality of the banana fibers,with the purpose to promote the use of this material in construction.Secondly,the results obtained with the gypsum matrix allowed us to note a preponderant improvement in the composite’s thermal properties thanks to the variation of the banana fiber additive.Thirdly,the impact of the nature of the banana fiber distribution(either fiber mixed in matrix or fiber series model)on the flexural and compressive strengths of the composites was studied.The results obtained indicate that the insulation gain reaches up to 40%.It depends on the volume fraction and type of distribution of the banana fibers.However,the thermal inertia of the composites developed,represented by thermal diffusivity and thermal effusivity,was studied.Results indicate a gain of 40%and 25%,respectively,in terms of thermal diffusivity and thermal effusivity of the developed composites compared to plaster alone.Concerning the mechanical properties,the flexural strength depends on the percentage of the volume fraction of banana fibers used,and it can reach 20%more than the flexural strength of plaster;nevertheless,there is a significant loss in terms of the compressive strength of the studied composites.The results obtained are confirmed by the microstructure of the fiber banana.In fact,the morphology of the banana fibers was improved by the drying process.It reduces the amorphous area and improves the cellulosic crystalline surfaces,which assures good adhesion between the fiber and the matrix plaster.Finally,the dimensionless coefficient analysis was done to judge the optimal proportion of the banana fiber additive and to recommend its use even on false ceilings or walls.
基金Supported by Hainan Provincial Natural Science Foundation of China(322MS114).
文摘[Objectives]This study was conducted to clarify the biological characteristics of the pathogen Phyllosticta capitalensis,the causal agent of freckle disease on Cavendish banana in Hainan Province,China.[Methods]The impact of various nutritional and environmental factors,including media,carbon sources,nitrogen sources,temperature,pH and light on the growth and sporulation of P.capitalensis was assessed using two distinct methods:mycelium growth rate and blood counting chamber.[Results]The mycelial growth and sporulation of P.capitalensis on different media exhibited notable differences.The use of banana leaf extract dextrose agar(BLEAD)and carrot agar(CA)was observed to facilitate rapid mycelial growth.The potato dextrose agar(PDA)and potato sucrose agar(PSA)were conducive to the production of conidia.The utilization of distinct carbon and nitrogen sources exerted a pronounced influence on the growth of P.capitalensis.Maltose,dextrose,fructose,and casein acid hydrolysate were the preferred substrates for mycelial growth.The tested carbon and nitrogen sources did not significantly stimulate conidial production,whereas dextrose and NaNO 3 were found to favor sporulation.The optimal temperature for mycelial growth and conidial production was determined to be 28 and 32℃,respectively.No mycelial growth was observed at 5℃.Active mycelial growth was observed at pH 6-10,with pH 6-7 being particularly conducive to sporulation.Complete darkness was conducive to mycelial growth and sporulation.[Conclusions]It is recommended that BLEDA and PDA should be incubated at 28℃for 14 d in the dark for the purpose of mycelial growth and sporulation of P.capitalensis,respectively.
文摘This study investigates the nitrogen (N), phosphorous (P), and potassium (K) contents in raw biomasses of Camellia sinensis, Gliricidia sepium, and Musa acuminata. Therein, the highest N and P content was seen in Camellia sinensis 116.80 ± 0.08 mg and 66.00 ± 0.14 mg respectively. The highest K content (106.80 ± 0.04 mg) was observed in Musa acuminata. Next, all three types of plant materials were allowed to decompose in water for 3 weeks, and a sample from each was analyzed for NPK after the 1st, 2nd, and 3rd week during decomposition. A significant increase in the release of N, P, and K by the Camellia sinensis to water (P Musa acuminate were not significantly changed (P > 0.05) over time. The ratio for N:P:K was calculated for raw biomass samples and decomposed samples to find the best fitting N:P:K ratio to apply to young tea plants as organic fertilizers. In addition to that, the microbial insight of these organic compounds was analyzed by observing how microbial population increased with decomposition by the enumeration of the total microbial count. A considerable increment in total microbial count was observed up to 3.28 × 10<sup>6</sup>, 1.21 × 10<sup>10</sup>, 2.18 × 10<sup>8</sup>, and 6.49 × 10<sup>7</sup> CFU/ml for Camellia sinensis, Gliricidia sepium, Musa accuminata (leaves), and Musa accuminata (trunk) respectively. The presence of phosphate solubilizing bacteria (PSB) and nitrogen solubilizing bacteria (NSB) throughout the decomposition period was confirmed by their growth on NBRIP and a modified nutrient medium that was specifically designed for the identification of ammonifiers respectively. Prepared fertilizer samples were applied to young tea plants that were grown in the Mawanella area in Sri Lanka (7°15'12.42"N 80°26'47.62"E) and according to the results, it is clear that fertilizer mixture 1 (N:P:K, 10:5:10, tea dust + Gliricidia + banana trunk) and fertilizer mixture 2 (N:P:K, 10:5:10, tea dust + Gliricidia + banana leaves) has the potential to increase the growth of young tea plants.
文摘The study has been aimed to evaluate and compare phytochemical content and the antioxidant activity in peel extracts of nine local varieties of banana, i.e. Musa sapientum species. Ethanolic extract of peels of these varieties were subjected to in vitro free radical scavenging assays like DPPH, ABTS and lipid peroxidation inhibition assay. Total antioxidant capacity assay to confirm the antioxidant potential and phytochemical content such as total phenols, flavonoids were also determined. The results obtained were analyzed statistically by ANOVA and DMRT analysis. The peel ex- tracts of all the nine varieties of banana exhibited significant antioxidant and phytochemical activities with Musa spp – Blueggoe (Monthan) - AAB and Musa spp – Rasthali – AAB showing highest free radical scavenging activity and Musa spp – Karpooravalli – ABB, Musa spp – Rasthali – AAB, Musa spp - Ney Poovan (Kadali) – AB and Musa spp – Mysore (Poovan) – AAB having highest phytochemical content. The study suggests that peel extracts of these banana varieties could be useful to combat free radical mediated diseases.
文摘Banana (Musa sp.) is a popular and important crop among many communities in East Africa. Banana production is however threatened by the wide-spread banana streak disease (BSD), caused by Banana streak virus (BSV). The success of BSV management is inherently coupled to the availability of a sensitive indexing method. In this study, the sensitivity of three BSV detection techniques: rolling circle amplification (RCA), immunocapture PCR (with degenerate and Gold finger primers) and standard PCR was compared. A set of 32 BSD-asymptomatic samples were used to compare the techniques. Analysis of variance (ANOVA) for comparison of the four techniques showed that there were significant differences (P Musa tissues for BSV. This study unveils a more reliable BSV detection method, a need that has remained unaddressed for a long while.
文摘Raw Banana Stalk (RBS), Acid Activated Banana Stalk (AABS) and Base Activated Banana Stalk (BABS) prepared from banana stalk were used as biosorbents to remove Lead(II) from aqueous solution. The biosorbents were characterised using proximate analysis and Fourier Transform Infrared (FTIR) spectroscopy. Pb(II) of 1000 mg/L concentration was prepared from Pb(NO3)2 salt and other concentrations were obtained from this stock through serial dilution. Effects of adsorbent dose, temperature, initial metal concentration, contact time and pH on the percentage Pb(II) removal were evaluated. The Pb(II) concentrations in the solutions were analysed using Atomic Absorption Spectrophotometer. Kinetic, isotherm and thermodynamic parameters were determined. FTIR spectroscopy showed that RBS, AABS and BABS are rich in carboxyl, hydroxyl and phenolic functional groups. At an equilibrium time of 180 minutes, the percentage Pb(II) removal was 63.97%, 96.13% and 66.90% for RBS, AABS and BABS, respectively. Pseudo-second order kinetics best described the process with R2 (0.95, 0.98, 0.97) for RBS, AABS and BABS, respectively. Langmuir isotherm (AABS) has the maximum adsorption capacity (qmax) of 13.53 mg/g and R2 (0.99). Thermodynamic parameters obtained were △G0 (?18.75 kJ/mol), △H0 (12.63 kJ/mol), △S0 (0.05 kJ/mol·K) and Ea (4.37 kJ/mol). Banana stalk has viable characteristics for preparing biosorbents. Acid activated banana biosorbent is more efficient for removal of lead ions from its aqueous solution.
文摘Soy protein isolate and egg white protein were added to cassava-banana gluten-free pasta and the effects on the nutritional quality,digestibility properties,protein digestibility corrected amino acid(PDCAA),and sensory acceptance of the pasta was observed.Banana-cassava composite flour(75:25)was blended with soy protein isolate or egg white protein at the following rates:0,5,10,and 15 g/100 g flour.Cooked pasta samples were analysed for total phenolic content(TPC),antioxidant activity,amino acid profiles,protein content,starch digestibility,protein digestibility and protein digestibility corrected amino acid score(PDCAAS).Addition of both proteins decreased starch digestibility,increased protein digestibility,improved the balance of the amino acid profile,and PDCAAS whereas only soy protein isolate enhanced the TPC and antioxidant capacity of the banana-cassava pasta.An egg white protein-fortified banana-cassava pasta had better customer acceptance and purchase intent than soy protein isolate inclusion.
基金the Ministry of Higher Education Malaysia for providing funds under the Long-term Research Grant Scheme(LRGS/1/2019/UPM/2/2)。
文摘Fusarium species were reported to produce biofilms.Biofilms are superficial societies of microbes bounded and endangered by being situated or taking place outside a cell or cells.The most destructive fungal diseases caused by phytopathogens are as a result of biofilms formation.Fusarium wilt of banana(Panama disease)is caused by a soil-borne pathogen called Fusarium oxysporum f.sp.cubense.Fusarium oxysporum occurs in a form of a species complex(FOSC)which encompasses a crowd of strains.Horizontal genetic factor transfer may donate to the observed assortment in pathogenic strains,while sexual reproduction is unknown in the FOSC.Fusarium wilt is a notorious disease on several crops worldwide.Yield loss caused by this pathogen is huge,and significant to destroy crop yields annually,thereby affecting the producer countries in various continents of the world.The disease is also resistant to various synthetic chemical fungicides.However,excessive use of synthetic fungicides during disease control could be lethal to humans,animals,and plants.This calls for alternative eco-friendly management of this disease by targeting the biofilms formation and finally suppressing this devastating phytopathogen.In this review,we,therefore,described the damage caused by Fusarium wilt disease,the concept of filamentous fungal biofilms,classical control strategies,sustainable disease control strategies using essential oils,and prevention and control of vegetables Fusarium wilt diseases.
基金Supported by the Earmarked Fund for China Agriculture Research System(CARS-31-02)Key R&D project in Hainan Province(ZDYF2019060)Agricultural Science and Technology Innovation Program of CAAS "Evaluation and Regulation of Nutritional Quality of Major Agricultural Products"
文摘Banana is one of the most important crops in tropical and subtropical regions of China. Fenjiao( Musa Spp. ABB,Pisang Awak subgroup) has been grown by small scale famers because of its stable market price and better sugar-acid blend. However,the traditional Fenjiao variety is susceptible to banana Fusarium wilt,has a high plant height( over 5. 0 m),and farmers lack large-scale planting techniques.Based on the traditional Fenjiao variety,we selected‘Refen 1’variety through mutagenesis technology,which has low temperature resistance,suitable to marginal soils and relatively low plant height( 3. 2-4. 0 m). This paper mainly introduces the major techniques of propagation,cultivation,and post-harvest stages of‘Refen 1’banana,including the selection of explant materials,treatment,disinfection,initial culture,nursery hardening of in vitro-produced banana plants,and transplant of tissue culture seedlings. The major points of the cultivation technology include banana plantation selection and preparation,planting methods,irrigation and fertilizer management,pruning and retaining,and prevention and control of plant diseases and insect pests.
文摘Banana flowers contain various bioactive components, including several antioxidants with anti-inflammatory effects. However, it is unclear whether they can reduce and prevent hair loss. This study examines the effect of banana flower extracts on preventing hair loss and strengthening hair roots. The banana flower extract(HappyAngel^(■))was used to treat human hair follicle dermal papilla cells(HFDPCs)and the expression of reactive oxygen species(ROS), dihydrotestosterone(DHT), and hair-related genes(SRD5A1, SRD5A2, AR, and KROX20)were monitored. Fifty subjects were divided into a placebo group and a banana flower group. The experimental group consumed banana flower extract daily for twelve weeks and then underwent hair testing, hair-related genes analysis, collection of hair loss, and questionnaires. The results showed that the banana flower extract significantly increased hair cell growth and decreased the expression of ROS, DHT, and hair follicle growth inhibition-related SRD5A1, SRD5A2, and AR genes, and significantly increased the expression of hair growth-related KROX20 gene in HFDPCs. Consuming banana flower extract for twelve weeks increased the hair root diameter and reduced hair loss and scalp redness compared to the placebo group. Thus, banana flower extract(HappyAngel^(■))can stimulate hair growth and inhibit the activation of hair loss genes.
文摘Dry season water application and conservation were studied for two years in Ado Ekiti to evaluate their effects on the performance of plantain Musa spp.. The treatments were: morning watering (MW), evening watering (EW), morning and evening watering (MEW), morning watering + mulch (MW + ML), evening watering + mulch (EW + ML), morning and evening watering + mulch (MEW + ML), mulch (ML) and Control. Height and girth increase, number of green leaves, yield and yield parameters were the highest in the MEW + ML which were identical to those of Evening watering + mulch and morning + evening watering. The evening or morning watering with mulch was identical but showed better performance than those without mulch. The mulched plants and the control showed the least performance. It is therefore recommended that proper water conservation in plantain plantation will improve banana survival during dry season and subsequently increase yield in the study area.
文摘Despite the nutritional, economic and medicinal values of banana plant, independent of the region and production system is confronted with some diseases such as the fungi disease. These fungal diseases are responsible for the low yields. The objective of this study was to improve the sanitary state of banana plant. To achieve this objective, fungi associated with banana leaves were isolated on Potato Dextrose Agar (PDA) culture medium and their identification was done on the basis of morphological and microscopic characteristics using reference documents. Antifungal activity of Allium ampeloprasum and Cymbopogon citratus extracts were evaluated in vitro on agar medium on the development of Pseudocercospora fijiensis, P. musicola and Pestalopsis sp. The results showed that banana plant harbours a diversity of fungal species, the most frequent being P. fijiensis (51.58%), Pestalopsis sp. (15.47%) and P. musicola (12.03%). Aqueous extracts of C. citratus at the concentration of 15 mg/ml, inhibited 100% of the radial growth of P. fijiensis and Pestalopsis sp with a fungitoxic activity. Similarly, ethanolic extract A. ampeloprasum inhibited at 100% the radial growth of Pestalopsis sp. This antifungal activity was fungistatic. These results suggest that the aqueous and ethanol extracts of the tested plants could be used as alternatives to chemical products in the fight against banana diseases especially Sigatoka. Hence further studies need to be undertaken to isolate the active compounds from these extracts with fungicidal potential.
基金This work was funded by the National Natural Science Foundation of China(Grant No.31830071)China Agriculture Research System of Ministry of Finance(MOF)and Ministry of Agriculture and Rural affairs(MARA)(Grant No.CARS-31).
文摘Mitogen-activated protein kinase(MAPK/MPK)cascades play crucial parts in plant growth,development processes,immune ability,and stress responses;however,the regulatory mechanism by which MAPK affects fruit ripening remains largely unexplored.Here,we reported that MaMPK14 cooperated with MaMYB4 to mediate postharvest banana fruit ripening.Transient overexpression of individual MaMPK14 and MaMYB4 in banana fruit delayed fruit ripening,confirming the negative roles in the ripening.The ripening negative regulator MaMYB4 could repress the transcription of genes associated with ethylene biosynthesis and fruit softening,such as MaACS1,MaXTH5,MaPG3,and MaEXPA15.Furthermore,MaMPK14 phosphorylated MaMYB4 at Ser160 via a direct interaction.Mutation at Ser160 of MaMYB4 reduced its interaction with MaMPK14 but did not affect its subcellular localization.Importantly,phosphorylation of MaMYB4 by MaMPK14 enhanced the MaMYB4-mediated transcriptional inhibition,binding strength,protein stability,and the repression of fruit ripening.Taken together,our results delineated the regulation pathway of MAPK module during banana fruit ripening,which involved the phosphorylation modification of MaMYB4 mediated by MaMPK14.
文摘Badnaviruses are serious plant pararetroviruses affecting banana and causes serious economic losses to banana production worldwide. This study aims to examine the variability of BSV and SCBV nature infecting banana in Burkina Faso. Polymerase Chain Reaction (PCR) used the Badna FP/RP specific primers for the RT/RNase H regions present in badnaviruses. The PCR yielded about 579 bp amplicons from banana infected by BSV and SCBV. The 38 BSV isolates recorded low nucleotide identity ranging from 58.9% - 98.1%. Based on percentage nucleotide sequence identity and phylogenetic analyse, BSV isolates were categorized into four groups: 1, 2, 3 and 4. Group 4 shared 76.9% - 100% identity with BSOL species. However, Groups 1 and 3 recorded a low identity ranging, from 76.8% - 79.2%, 68.8% - 79.7% with BSCV, and 72.8% - 79.0% between Group 2 and BSOLV. Groups 1, 2 and 3 were assigned to a potentially new BSV species. The two SCBV isolates recorded a low nucleotide identity of 68% among themselves indicating high diversity. In addition, SCBV_Cd and SCBV_CE showed high nucleotide identity 91.3% and 58.7% with SCBV_C and SCBV, when they were compared to all published SCBV genotypes. In addition, phylogenetic analysis revealed the segregation of SCBV isolates into two genotypes, SCBV_Cd in C and SCBV_CE segregated in a new genotype namely Z. Recombination analyses showed weak signatures of recombination among some of the BSV and SCBV sequences.
文摘Only 42% of Uganda’s population has access to electricity. The population continues to use firewood and charcoal as a source of energy, which leads to depletion of forests thus to climate change. The purpose of this study was to assess the potential of biogas production from jackfruit waste, banana peels, and pineapple peels when co-digested with cow dung as an alternative energy source. Substrates for each waste were co-digested with varying proportions (0%, 25%, and 50%) of cow dung using laboratory-scale 250 mL anaerobic digestors. The total biogas generation for jackfruit waste, banana peels, and pineapple peels after 30 days of anaerobic digestion was 82.3, 189, and 262 mL, respectively. When jack fruit waste, pineapple peels and banana peels were co-digested with 25% cow dung, the total amount of biogas produced increased by a factor of two and three, respectively. However, 50% of cow dung only significantly (p ≤ 0.05) improved for jack fruit waste by two folds. Therefore, the results indicated that jackfruit waste, banana and pineapple peels can be used for biogas production to augment energy supply. .