The existence of periodic solutions for a kind of generalized Liénard typed functional differential equation is studied. By means of the continuation theorem of coincidence degree theory, existence criteria are ...The existence of periodic solutions for a kind of generalized Liénard typed functional differential equation is studied. By means of the continuation theorem of coincidence degree theory, existence criteria are established for the existence of periodic solutions and some previous results are extended.展开更多
By means of an abstract continuation theorem, the existence criteria are established for the positive periodic solutions of a neutral functional differential equation d N d t=N(t)[a(t)-β(t)N(t)-b(t)N(t-σ(t))-c(...By means of an abstract continuation theorem, the existence criteria are established for the positive periodic solutions of a neutral functional differential equation d N d t=N(t)[a(t)-β(t)N(t)-b(t)N(t-σ(t))-c(t)N′(t-τ(t))].展开更多
This article deals with the reflective function of the mth-order nonlinear differential systems.The results are applied to discussing the stability property of periodic solutions of these systems.
This paper is concerned with the existence and approximation of solutions for a class of first order impulsive functional differential equations with periodic boundary value conditions. A new comparison result is pres...This paper is concerned with the existence and approximation of solutions for a class of first order impulsive functional differential equations with periodic boundary value conditions. A new comparison result is presented and the previous results are extended.展开更多
The theory of detecling ridges in the modulus of the continuous wavelet transform is presented as well as reconstructing signal by using information on ridges,To periodic signal we suppose Morlet wavelet as basic wave...The theory of detecling ridges in the modulus of the continuous wavelet transform is presented as well as reconstructing signal by using information on ridges,To periodic signal we suppose Morlet wavelet as basic wavelet, and research the local extreme point and extrema of the wavelet transform on periodic function for the collection of signal' s instantaneous amplitude and period.展开更多
In this paper, a three species diffusive predator-prey model with functional response is studied, where all parameters are time dependent. By using the continuation theorem of coincidence degree theory, the existence ...In this paper, a three species diffusive predator-prey model with functional response is studied, where all parameters are time dependent. By using the continuation theorem of coincidence degree theory, the existence of a positive periodic solution for this system is established.展开更多
For functional difference equations with unbounded delay,we characterized the existence of totally stable and asymptotically almost periodic solution by using stability properties of a bounded solution in a certain li...For functional difference equations with unbounded delay,we characterized the existence of totally stable and asymptotically almost periodic solution by using stability properties of a bounded solution in a certain limiting equation.展开更多
In this paper. four sufficiency theorems of existence of periodic solutions for aclass of retarded functional differential equations are given. The result of thesetheorems is better than the well-known Yoshizawa’s p...In this paper. four sufficiency theorems of existence of periodic solutions for aclass of retarded functional differential equations are given. The result of thesetheorems is better than the well-known Yoshizawa’s periodic solution theorem. Anexample of application is given at the end.展开更多
Aim To investigate the periodic boundary value problem for functional differential equations with impulses. Methods The method of upper and lower solutions and the monotone iterative technique were used to establish...Aim To investigate the periodic boundary value problem for functional differential equations with impulses. Methods The method of upper and lower solutions and the monotone iterative technique were used to establish our results. Results and Conclusion The results of the existence of maximal and minimal solutions of the periodic boundary value problem for functional differential equations with impulses are obtained.展开更多
This paper presents a robust topology optimization design approach for multi-material functional graded structures under periodic constraint with load uncertainties.To characterize the random-field uncertainties with ...This paper presents a robust topology optimization design approach for multi-material functional graded structures under periodic constraint with load uncertainties.To characterize the random-field uncertainties with a reduced set of random variables,the Karhunen-Lo`eve(K-L)expansion is adopted.The sparse grid numerical integration method is employed to transform the robust topology optimization into a weighted summation of series of deterministic topology optimization.Under dividing the design domain,the volume fraction of each preset gradient layer is extracted.Based on the ordered solid isotropic microstructure with penalization(Ordered-SIMP),a functionally graded multi-material interpolation model is formulated by individually optimizing each preset gradient layer.The periodic constraint setting of the gradient layer is achieved by redistributing the average element compliance in sub-regions.Then,the method of moving asymptotes(MMA)is introduced to iteratively update the design variables.Several numerical examples are presented to verify the validity and applicability of the proposed method.The results demonstrate that the periodic functionally graded multi-material topology can be obtained under different numbers of sub-regions,and robust design structures are more stable than that indicated by the deterministic results.展开更多
In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann the...In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann theta function, then the one and two periodic wave solutions are presented~ and it is also shown that the soliton solutions can be reduced from the periodic wave solutions.展开更多
The sufficient condition for the existence of2 π- periodic solutions of the following third- order functional differential equations with variable coefficients a(t) x (t) +bx″2 k- 1(t) +cx′2 k- 1(t) + 2 k- 1 i=1...The sufficient condition for the existence of2 π- periodic solutions of the following third- order functional differential equations with variable coefficients a(t) x (t) +bx″2 k- 1(t) +cx′2 k- 1(t) + 2 k- 1 i=1 cixi(t) +g(x(t-τ) ) =p(t) =p(t+2π) is obtained.The approach is based on the abstract continuation theorem from Mawhin and the a- priori estimate of periodic solutions展开更多
Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with ...Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with distributed and discrete delays are obtained. Moreover,we construct an example to illustrate the feasibility of our results.展开更多
This paper is concerned with the nonlinear neutral functional difference equations△x(n) =-a(n)x(n) +h(n)f(n,x(n-T(n)),△x(n-δ(n))),where a,h and f are nonnegative sequences.Sufficient conditions for the existence of...This paper is concerned with the nonlinear neutral functional difference equations△x(n) =-a(n)x(n) +h(n)f(n,x(n-T(n)),△x(n-δ(n))),where a,h and f are nonnegative sequences.Sufficient conditions for the existence of at least three positive T-periodic solutions are established by using a fixed point theorem due to Avery and Peterson.展开更多
A one-step band-limited extrapolation procedure is systematically developed under an a priori assumption of bandwidth. The rationale of the proposed scheme is to expand the known signal segment based on a band-limited...A one-step band-limited extrapolation procedure is systematically developed under an a priori assumption of bandwidth. The rationale of the proposed scheme is to expand the known signal segment based on a band-limited basis function set and then to generate a set of Empirical Orthogonal Functions (EOF’s) adaptively from the sample values of the band-limited function set. Simulation results indicate that, in addi- tion to the attractive adaptive feature, this scheme also appears to guarantee a smooth result for inexact data, thus suggesting the robustness of the proposed procedure.展开更多
Kinetic energy(KE) functional is crucial to speed up density functional theory calculation. However, deriving it accurately through traditional physics reasoning is challenging. We develop a generally applicable KE fu...Kinetic energy(KE) functional is crucial to speed up density functional theory calculation. However, deriving it accurately through traditional physics reasoning is challenging. We develop a generally applicable KE functional estimator for a one-dimensional (1D) extended system using a machine learning method. Our end-to-end solution combines the dimensionality reduction method with the Gaussian process regression, and simple scaling method to adapt to various 1D lattices. In addition to reaching chemical accuracy in KE calculation, our estimator also performs well on KE functional derivative prediction. Integrating this machine learning KE functional into the current orbital free density functional theory scheme is able to provide us with expected ground state electron density.展开更多
In this paper, we investigate the existence of multiple positive periodic solutions for functional differential equations with infinite delay by applying the Krasnoselskii fixed point theorem for cone map and the Legg...In this paper, we investigate the existence of multiple positive periodic solutions for functional differential equations with infinite delay by applying the Krasnoselskii fixed point theorem for cone map and the Leggett-Williams fixed point theorem.展开更多
The aim of this work is to study the existence of a periodic solution for some neutral partial functional differential equations. Our approach is based on the R-boundedness of linear operators Lp-multipliers and UMD-s...The aim of this work is to study the existence of a periodic solution for some neutral partial functional differential equations. Our approach is based on the R-boundedness of linear operators Lp-multipliers and UMD-spaces.展开更多
Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct dou...Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k →1, these solutions reduce to the solitary wave solutions of the equation.展开更多
Some properties of the wavelet transform of trigonometric Junction, periodic function and nonstationary periodic function have been investigated. The results show that the peak height and width in wavelet energy spect...Some properties of the wavelet transform of trigonometric Junction, periodic function and nonstationary periodic function have been investigated. The results show that the peak height and width in wavelet energy spectrum of a periodic function are in proportion to its period. At the same time, a new equation, which can truly reconstruct a trigonometric function with only one scale wavelet coefficient, is presented. The reconstructed wave shape of a periodic function with the equation is better than any term of its Fourier series. And the reconstructed wave shape of a class of nonstationary periodic function with this equation agrees well with the function.展开更多
文摘The existence of periodic solutions for a kind of generalized Liénard typed functional differential equation is studied. By means of the continuation theorem of coincidence degree theory, existence criteria are established for the existence of periodic solutions and some previous results are extended.
基金National Natural Science Foundation of China( 198710 0 5 )
文摘By means of an abstract continuation theorem, the existence criteria are established for the positive periodic solutions of a neutral functional differential equation d N d t=N(t)[a(t)-β(t)N(t)-b(t)N(t-σ(t))-c(t)N′(t-τ(t))].
基金the National Natural Science Foundation of China(1 0 1 71 0 88) and the National Natural Science Foundation of Jiangsu Educational Committee(99KJ1 1 0 0 0 5 )
文摘This article deals with the reflective function of the mth-order nonlinear differential systems.The results are applied to discussing the stability property of periodic solutions of these systems.
基金Supported by the National Natural Science Foundation of China (10571050 10871062)Hunan Provincial Innovation Foundation For Postgraduate
文摘This paper is concerned with the existence and approximation of solutions for a class of first order impulsive functional differential equations with periodic boundary value conditions. A new comparison result is presented and the previous results are extended.
基金Supported by the National Natural Science Founda-tion of China (49771060)
文摘The theory of detecling ridges in the modulus of the continuous wavelet transform is presented as well as reconstructing signal by using information on ridges,To periodic signal we suppose Morlet wavelet as basic wavelet, and research the local extreme point and extrema of the wavelet transform on periodic function for the collection of signal' s instantaneous amplitude and period.
文摘In this paper, a three species diffusive predator-prey model with functional response is studied, where all parameters are time dependent. By using the continuation theorem of coincidence degree theory, the existence of a positive periodic solution for this system is established.
文摘For functional difference equations with unbounded delay,we characterized the existence of totally stable and asymptotically almost periodic solution by using stability properties of a bounded solution in a certain limiting equation.
文摘In this paper. four sufficiency theorems of existence of periodic solutions for aclass of retarded functional differential equations are given. The result of thesetheorems is better than the well-known Yoshizawa’s periodic solution theorem. Anexample of application is given at the end.
文摘Aim To investigate the periodic boundary value problem for functional differential equations with impulses. Methods The method of upper and lower solutions and the monotone iterative technique were used to establish our results. Results and Conclusion The results of the existence of maximal and minimal solutions of the periodic boundary value problem for functional differential equations with impulses are obtained.
基金This work is supported by the Natural Science Foundation of China(Grant 51705268)China Postdoctoral Science Foundation Funded Project(Grant 2017M612191).
文摘This paper presents a robust topology optimization design approach for multi-material functional graded structures under periodic constraint with load uncertainties.To characterize the random-field uncertainties with a reduced set of random variables,the Karhunen-Lo`eve(K-L)expansion is adopted.The sparse grid numerical integration method is employed to transform the robust topology optimization into a weighted summation of series of deterministic topology optimization.Under dividing the design domain,the volume fraction of each preset gradient layer is extracted.Based on the ordered solid isotropic microstructure with penalization(Ordered-SIMP),a functionally graded multi-material interpolation model is formulated by individually optimizing each preset gradient layer.The periodic constraint setting of the gradient layer is achieved by redistributing the average element compliance in sub-regions.Then,the method of moving asymptotes(MMA)is introduced to iteratively update the design variables.Several numerical examples are presented to verify the validity and applicability of the proposed method.The results demonstrate that the periodic functionally graded multi-material topology can be obtained under different numbers of sub-regions,and robust design structures are more stable than that indicated by the deterministic results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10771196 and 10831003)the Innovation Project of Zhejiang Province of China(Grant No.T200905)
文摘In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann theta function, then the one and two periodic wave solutions are presented~ and it is also shown that the soliton solutions can be reduced from the periodic wave solutions.
基金Supported by the National Natural Science Foundation of China(1 9971 0 2 6 )
文摘The sufficient condition for the existence of2 π- periodic solutions of the following third- order functional differential equations with variable coefficients a(t) x (t) +bx″2 k- 1(t) +cx′2 k- 1(t) + 2 k- 1 i=1 cixi(t) +g(x(t-τ) ) =p(t) =p(t+2π) is obtained.The approach is based on the abstract continuation theorem from Mawhin and the a- priori estimate of periodic solutions
基金Supported by the National Natural Science Foundation of China(11071001)Supported by the NSF of Education Bureau of Anhui Province(KJ2009A005Z,KJ2010ZD02,2010SQRL159)+1 种基金Supported by the 211 Project of Anhui University(KJTD002B)Supported by the Natural Science Foundation of Anhui Province(1208085MA13)
文摘Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with distributed and discrete delays are obtained. Moreover,we construct an example to illustrate the feasibility of our results.
基金Supported by the Natural Science Foundation of Hunan Province(12JJ6006) Supported by the Science Foundation of Department of Science and Technology of Hunan Province(2012FJ3107)
文摘This paper is concerned with the nonlinear neutral functional difference equations△x(n) =-a(n)x(n) +h(n)f(n,x(n-T(n)),△x(n-δ(n))),where a,h and f are nonnegative sequences.Sufficient conditions for the existence of at least three positive T-periodic solutions are established by using a fixed point theorem due to Avery and Peterson.
文摘A one-step band-limited extrapolation procedure is systematically developed under an a priori assumption of bandwidth. The rationale of the proposed scheme is to expand the known signal segment based on a band-limited basis function set and then to generate a set of Empirical Orthogonal Functions (EOF’s) adaptively from the sample values of the band-limited function set. Simulation results indicate that, in addi- tion to the attractive adaptive feature, this scheme also appears to guarantee a smooth result for inexact data, thus suggesting the robustness of the proposed procedure.
基金Supported by the Hong Kong Research Grants Council (Project No.GRF16300918)the National Key R&D Program of China(Grant Nos.2016YFA0300603 and 2016YFA0302400)the National Natural Science Foundation of China (Grant No.11774398)。
文摘Kinetic energy(KE) functional is crucial to speed up density functional theory calculation. However, deriving it accurately through traditional physics reasoning is challenging. We develop a generally applicable KE functional estimator for a one-dimensional (1D) extended system using a machine learning method. Our end-to-end solution combines the dimensionality reduction method with the Gaussian process regression, and simple scaling method to adapt to various 1D lattices. In addition to reaching chemical accuracy in KE calculation, our estimator also performs well on KE functional derivative prediction. Integrating this machine learning KE functional into the current orbital free density functional theory scheme is able to provide us with expected ground state electron density.
文摘In this paper, we investigate the existence of multiple positive periodic solutions for functional differential equations with infinite delay by applying the Krasnoselskii fixed point theorem for cone map and the Leggett-Williams fixed point theorem.
文摘The aim of this work is to study the existence of a periodic solution for some neutral partial functional differential equations. Our approach is based on the R-boundedness of linear operators Lp-multipliers and UMD-spaces.
文摘Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k →1, these solutions reduce to the solitary wave solutions of the equation.
基金Foundation items:the National Development Programming of Key Fundamental Researches of China(G1999022103)Planed Item for Distinguished Teacher Invested by Minisny of Education PRC
文摘Some properties of the wavelet transform of trigonometric Junction, periodic function and nonstationary periodic function have been investigated. The results show that the peak height and width in wavelet energy spectrum of a periodic function are in proportion to its period. At the same time, a new equation, which can truly reconstruct a trigonometric function with only one scale wavelet coefficient, is presented. The reconstructed wave shape of a periodic function with the equation is better than any term of its Fourier series. And the reconstructed wave shape of a class of nonstationary periodic function with this equation agrees well with the function.