In this paper,a 5G wideband power amplifier(PA)with bandpass filtering response is synthesized using a bandwidth-extended bandpass filter as the matching network(MN).In this structure,the bandwidth(θ_(C))is defined a...In this paper,a 5G wideband power amplifier(PA)with bandpass filtering response is synthesized using a bandwidth-extended bandpass filter as the matching network(MN).In this structure,the bandwidth(θ_(C))is defined as a variable in the closedform equations provided by the microstrip bandpass filter.It can be extended over a wide range only by changing the characteristic impedances of the structure.Different from the other wideband MNs,the extension of bandwidth does not increase the complexity of the structure(order n is fixed).In addition,based on the bandwidth-extended structure,the wideband design of bandpass filtering PA is not limited to the fixed bandwidth of the specific filter structure.The theoretical analysis of the MN and the design flow of the PA are provided in this design.The fabricated bandpass filtering PA can support almost one-octave bandwidth(2-3.8 GHz),covering the two 5G bands(n41 and n78).The drain efficiency of 47%-60%and output power higher than 40 dBm are measured.Good frequency selectivity in S-parameter measurements can be observed.展开更多
With the diversified development of big data,detection and precision guidance technologies,electromagnetic(EM)functional materials and devices serving multiple spectrums have become a hot topic.Exploring the multispec...With the diversified development of big data,detection and precision guidance technologies,electromagnetic(EM)functional materials and devices serving multiple spectrums have become a hot topic.Exploring the multispectral response of materials is a challenging and meaningful scientific question.In this study,MXene/TiO_(2)hybrids with tunable conduction loss and polarization relaxation are fabricated by in situ atomic reconstruction engineering.More importantly,MXene/TiO_(2)hybrids exhibit adjustable spectral responses in the GHz,infrared and visible spectrums,and several EM devices are constructed based on this.An antenna array provides excellent EM energy harvesting in multiple microwave bands,with|S11|up to−63.2 dB,and can be tuned by the degree of bending.An ultra-wideband bandpass filter realizes a passband of about 5.4 GHz and effectively suppresses the transmission of EM signals in the stopband.An infrared stealth device has an emissivity of less than 0.2 in the infrared spectrum at wavelengths of 6-14μm.This work can provide new inspiration for the design and development of multifunctional,multi-spectrum EM devices.展开更多
Wind loads have instantaneity and turbulence characteristics that will lead to pointing errors in antenna structures,and these errors cannot be ignored in high-frequency observations.Using the Tianma 65 m radio telesc...Wind loads have instantaneity and turbulence characteristics that will lead to pointing errors in antenna structures,and these errors cannot be ignored in high-frequency observations.Using the Tianma 65 m radio telescope(TMRT)as an example object,the pointing errors caused by wind loads are investigated using an accelerometer system.First,the resonant frequency range of the antenna structure is used for reference to acquire useful signals through the bandpass filtering method.Then,the direct current(DC)component of these signals is filtered out using the fast discrete Fourier transform method,and the baseline of the acceleration is corrected using the least-squares method.Finally,the acceleration integral is solved approximately using the discrete trapezoidal area method,and the structural vibration displacement of the antenna is determined using a double integral of acceleration.The pointing errors are then obtained based on the displacement relationship between the primary and subreflector surfaces.When the wind speed is 3.2 m/s,the antenna pitch angle is 61.7°and the wind direction angle is 80°,the generated pitch pointing error is 3.05'',and the azimuth pointing error is 1.14''.These results are consistent with those obtained via inclinometer measurements,thus validating the signal processing method and the pointing error calculation method proposed in this paper.The research methods and data analysis results reported here provide a basis for further wind-induced pointing error correction studies.展开更多
A design of a linear and fully-balanced operational transconductanee amplifier (OTA) with improved high DC gain and wide bandwidth is presented. Derivative from a single common-source field effect transistor (FET)...A design of a linear and fully-balanced operational transconductanee amplifier (OTA) with improved high DC gain and wide bandwidth is presented. Derivative from a single common-source field effect transistor (FET) cas- cade and its DC I-V characteristics,the third-order coefficient g3 hasbeen well compensated with a parallel FET operated in the triode region, which has even-odd symmetries between the boundary of the saturation and triode region. Therefore,for high linearity,a simple solution is obtained to increase input signal amplitude in saturation for the application of OTA continuous-time filters. A negative resistance load (NRL) technique is used for the compensation of parasitic output resistance and an achievement of a high DC-gain of the OTA circuits without extra internal nodes. Additionally, derivations from the ideal -90° phase of the gm-C integrator mainly due to a finite DC gain and parasitic poles will be avoided in the frequency range of interest. HSPICE simulation shows that the total harmonic distortion at 1Vp-p is less than 1% from a single 3.3V supply. As an application of the VHF CMOS OTA,a second-order OTA-C bandpass filter is fabricated using a 0. 18μm CMOS process with two kinds of gate-oxide layers, which has achieved a center frequency of 20MHz,a 3dB-bandwidth of 180kHz,and a quality factor of 110.展开更多
The microstrip dual-mode filter (DMF) with conventional coupling structure has some limitations in- eluding the port coupling strength limited by fabrication tolerance and the existence of serious second order spuri...The microstrip dual-mode filter (DMF) with conventional coupling structure has some limitations in- eluding the port coupling strength limited by fabrication tolerance and the existence of serious second order spuri- ous band. Therefore, a novel DMF with a offset-feed bended coupling structure and a stepped-impedance dual- mode resonator is proposed for coupling enhancement and spurious response suppression. Based on the analysis of the change of spur frequencies and the current distribution of spur resonant modes, all spurs near passband of the cascaded DMF can be fully suppressed by optimizing the structure parameters of parasite resonators, which bene- fits from the inherent well-controlled transmission zeros. Experimental results show that the proposed DMF ex- hibits lower insertion loss ,much sharper rate of cutoff and wider spur-free stop band compared with conventional DMF. This design is applicable for spur suppression in wideband communication.展开更多
基金supported by National Natural Science Foundations of China (No.61971052 and No.U20A20203)Key Research and Development Project of Guangdong Province (2020B0101080001)
文摘In this paper,a 5G wideband power amplifier(PA)with bandpass filtering response is synthesized using a bandwidth-extended bandpass filter as the matching network(MN).In this structure,the bandwidth(θ_(C))is defined as a variable in the closedform equations provided by the microstrip bandpass filter.It can be extended over a wide range only by changing the characteristic impedances of the structure.Different from the other wideband MNs,the extension of bandwidth does not increase the complexity of the structure(order n is fixed).In addition,based on the bandwidth-extended structure,the wideband design of bandpass filtering PA is not limited to the fixed bandwidth of the specific filter structure.The theoretical analysis of the MN and the design flow of the PA are provided in this design.The fabricated bandpass filtering PA can support almost one-octave bandwidth(2-3.8 GHz),covering the two 5G bands(n41 and n78).The drain efficiency of 47%-60%and output power higher than 40 dBm are measured.Good frequency selectivity in S-parameter measurements can be observed.
基金supported by the National Natural Science Foundation of China(Grant Nos.52373280,52177014,51977009,52273257).
文摘With the diversified development of big data,detection and precision guidance technologies,electromagnetic(EM)functional materials and devices serving multiple spectrums have become a hot topic.Exploring the multispectral response of materials is a challenging and meaningful scientific question.In this study,MXene/TiO_(2)hybrids with tunable conduction loss and polarization relaxation are fabricated by in situ atomic reconstruction engineering.More importantly,MXene/TiO_(2)hybrids exhibit adjustable spectral responses in the GHz,infrared and visible spectrums,and several EM devices are constructed based on this.An antenna array provides excellent EM energy harvesting in multiple microwave bands,with|S11|up to−63.2 dB,and can be tuned by the degree of bending.An ultra-wideband bandpass filter realizes a passband of about 5.4 GHz and effectively suppresses the transmission of EM signals in the stopband.An infrared stealth device has an emissivity of less than 0.2 in the infrared spectrum at wavelengths of 6-14μm.This work can provide new inspiration for the design and development of multifunctional,multi-spectrum EM devices.
基金provided by the TMRT operators during the observations.This work was supported by the National Key Basic Research and Development Program(2018YFA0404702)the National Natural Science Foundation of China(U1631114,11873015,and 11203062)+2 种基金the CAS Key Technology Talent Program,the Knowledge Innovation Program of CAS(KJCX1-YW-18)the Scientific Program of Shanghai Municipality(08DZ1160100)the Key Laboratory for Radio Astronomy of CAS,the Key Laboratory of Planetary Sciences of CAS,and the CAS Scholarship.
文摘Wind loads have instantaneity and turbulence characteristics that will lead to pointing errors in antenna structures,and these errors cannot be ignored in high-frequency observations.Using the Tianma 65 m radio telescope(TMRT)as an example object,the pointing errors caused by wind loads are investigated using an accelerometer system.First,the resonant frequency range of the antenna structure is used for reference to acquire useful signals through the bandpass filtering method.Then,the direct current(DC)component of these signals is filtered out using the fast discrete Fourier transform method,and the baseline of the acceleration is corrected using the least-squares method.Finally,the acceleration integral is solved approximately using the discrete trapezoidal area method,and the structural vibration displacement of the antenna is determined using a double integral of acceleration.The pointing errors are then obtained based on the displacement relationship between the primary and subreflector surfaces.When the wind speed is 3.2 m/s,the antenna pitch angle is 61.7°and the wind direction angle is 80°,the generated pitch pointing error is 3.05'',and the azimuth pointing error is 1.14''.These results are consistent with those obtained via inclinometer measurements,thus validating the signal processing method and the pointing error calculation method proposed in this paper.The research methods and data analysis results reported here provide a basis for further wind-induced pointing error correction studies.
文摘A design of a linear and fully-balanced operational transconductanee amplifier (OTA) with improved high DC gain and wide bandwidth is presented. Derivative from a single common-source field effect transistor (FET) cas- cade and its DC I-V characteristics,the third-order coefficient g3 hasbeen well compensated with a parallel FET operated in the triode region, which has even-odd symmetries between the boundary of the saturation and triode region. Therefore,for high linearity,a simple solution is obtained to increase input signal amplitude in saturation for the application of OTA continuous-time filters. A negative resistance load (NRL) technique is used for the compensation of parasitic output resistance and an achievement of a high DC-gain of the OTA circuits without extra internal nodes. Additionally, derivations from the ideal -90° phase of the gm-C integrator mainly due to a finite DC gain and parasitic poles will be avoided in the frequency range of interest. HSPICE simulation shows that the total harmonic distortion at 1Vp-p is less than 1% from a single 3.3V supply. As an application of the VHF CMOS OTA,a second-order OTA-C bandpass filter is fabricated using a 0. 18μm CMOS process with two kinds of gate-oxide layers, which has achieved a center frequency of 20MHz,a 3dB-bandwidth of 180kHz,and a quality factor of 110.
基金Supported by the National Natural Science Foundation of China under Grant(60921063)the National Program on Key Basic Research Project(973Program)(2010CB327400)the National Science and Technology Major Project(2010ZX03007-002-01)~~
文摘The microstrip dual-mode filter (DMF) with conventional coupling structure has some limitations in- eluding the port coupling strength limited by fabrication tolerance and the existence of serious second order spuri- ous band. Therefore, a novel DMF with a offset-feed bended coupling structure and a stepped-impedance dual- mode resonator is proposed for coupling enhancement and spurious response suppression. Based on the analysis of the change of spur frequencies and the current distribution of spur resonant modes, all spurs near passband of the cascaded DMF can be fully suppressed by optimizing the structure parameters of parasite resonators, which bene- fits from the inherent well-controlled transmission zeros. Experimental results show that the proposed DMF ex- hibits lower insertion loss ,much sharper rate of cutoff and wider spur-free stop band compared with conventional DMF. This design is applicable for spur suppression in wideband communication.