Extending the ionic conductivity is the pre-requisite of electrolytes in fuel cell technology for high-electrochemical performance.In this regard,the introduction of semiconductor-oxide materials and the approach of h...Extending the ionic conductivity is the pre-requisite of electrolytes in fuel cell technology for high-electrochemical performance.In this regard,the introduction of semiconductor-oxide materials and the approach of heterostructure formation by modulating energy bands to enhance ionic conduction acting as an electrolyte in fuel cell-device.Semiconductor(n-type;SnO_(2))plays a key role by introducing into p-type SrFe_(0.2)Ti_(0.8)O_(3-δ)(SFT)semiconductor perovskite materials to construct p-n heterojunction for high ionic conductivity.Therefore,two different composites of SFT and SnO_(2)are constructed by gluing p-and n-type SFT-SnO_(2),where the optimal composition of SFT-SnO_(2)(6∶4)heterostructure electrolyte-based fuel cell achieved excellent ionic conductivity 0.24 S cm^(-1)with power-output of 1004 mW cm^(-2)and high OCV 1.12 V at a low operational temperature of 500℃.The high power-output and significant ionic conductivity with durable operation of 54 h are accredited to SFT-SnO_(2)heterojunction formation including interfacial conduction assisted by a built-in electric field in fuel cell device.Moreover,the fuel conversion efficiency and considerable Faradaic efficiency reveal the compatibility of SFT-SnO_(2)heterostructure electrolyte and ruled-out short-circuiting issue.Further,the first principle calculation provides sufficient information on structure optimization and energy-band structure modulation of SFT-SnO_(2).This strategy will provide new insight into semiconductor-based fuel cell technology to design novel electrolytes.展开更多
Materials with kagome lattices have attracted significant research attention due to their nontrivial features in energy bands.We theoretically investigate the evolution of electronic band structures of kagome lattices...Materials with kagome lattices have attracted significant research attention due to their nontrivial features in energy bands.We theoretically investigate the evolution of electronic band structures of kagome lattices in response to uniaxial strain using both a tight-binding model and an antidot model based on a periodic muffin-tin potential.It is found that the Dirac points move with applied strain.Furthermore,the flat band of unstrained kagome lattices is found to develop into a highly anisotropic shape under a stretching strain along y direction,forming a partially flat band with a region dispersionless along ky direction while dispersive along kx direction.Our results shed light on the possibility of engineering the electronic band structures of kagome materials by mechanical strain.展开更多
The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum ...The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum dot(QDs)materials in a simple and convenient way to form a heterogeneous structure.Various performance enhancements have been realized through the formation of typeⅡenergy bands in heterostructures,opening up new research directions for the future development of photodetector devices.This work successfully fabricated a high-sensitivity photodetector based on WS_(2)QDs/GaAs NWs heterostructure.Under 660 nm laser excitation,the photodetector exhibits a responsivity of 368.07 A/W,a detectivity of 2.7×10^(12)Jones,an external quantum efficiency of 6.47×10^(2)%,a low-noise equivalent power of 2.27×10^(-17)W·Hz^(-1/2),a response time of 0.3 s,and a recovery time of 2.12 s.This study provides a new solution for the preparation of high-performance GaAs detectors and promotes the development of optoelectronic devices for GaAs NWs.展开更多
Band structure analysis holds significant importance for understanding the optoelectronic characteristics of semiconductor structures and exploring their potential applications in practice. For quantum well structures...Band structure analysis holds significant importance for understanding the optoelectronic characteristics of semiconductor structures and exploring their potential applications in practice. For quantum well structures, the energy of carriers in the well splits into discrete energy levels due to the confinement of barriers in the growth direction. However, the discrete energy levels obtained at a fixed wave vector cannot accurately reflect the actual energy band structure. In this work, the band structure of the type-II quantum wells is reanalyzed. When the wave vectors of the entire Brillouin region(corresponding to the growth direction) are taken into account, the quantized energy levels of the carriers in the well are replaced by subbands with certain energy distributions. This new understanding of the energy bands of low-dimensional structures not only helps us to have a deeper cognition of the structure, but also may overturn many viewpoints in traditional band theories and serve as supplementary to the band theory of low-dimensional systems.展开更多
Transition-metal phosphides(TMPs)with high catalytic activity are widely used in the design of electrodes for water splitting.However,a major challenge is how to achieve the trade-off between activity and stability of...Transition-metal phosphides(TMPs)with high catalytic activity are widely used in the design of electrodes for water splitting.However,a major challenge is how to achieve the trade-off between activity and stability of TMPs.Herein,a novel method for synthesizing CoP nanoparticles encapsu-lated in a rich-defect carbon shell(CoP/DCS)is developed through the self-assembly of modified polycyclic aromatic molecules.The graft and removal of high-activity C-N bonds of aromatic molecules render the controllable design of crystallite defects of carbon shell.The density functional theory calculation indicates that the carbon defects with unpaired electrons could effectively tailor the band structure of CoP.Benefiting from the improved activity and corrosion resistance,the CoP/DCS delivers outstanding difunctional hydrogen evolution reaction(88 mV)and oxygen evolution reaction(251 mV)performances at 10 mA cm^(−2)current density.Furthermore,the coupled water electrolyzer with CoP/DCS as both the cathode and anode presents ultralow cell voltages of 1.49 V to achieve 10 mA cm^(−2)with long-time stability.This strategy to improve TMPs electrocatalyst with rich-DCS and heterogeneous structure will inspire the design of other transition metal compound electrocatalysts for water splitting.展开更多
In this work,we reported a high-performance-based ultraviolet-visible(UV-VIS)photodetector based on a TiO_(2)@GaO_(x)N_(y)-Ag heterostructure.Ag particles were introduced into TiO_(2)@GaO_(x)N_(y)to enhance the visibl...In this work,we reported a high-performance-based ultraviolet-visible(UV-VIS)photodetector based on a TiO_(2)@GaO_(x)N_(y)-Ag heterostructure.Ag particles were introduced into TiO_(2)@GaO_(x)N_(y)to enhance the visible light detection perfor-mance of the heterojunction device.At 380 nm,the responsivity and detectivity of TiO_(2)@GaO_(x)N_(y)-Ag were 0.94 A/W and 4.79×109 Jones,respectively,and they increased to 2.86 A/W and 7.96×1010 Jones at 580 nm.The rise and fall times of the response were 0.19/0.23 and 0.50/0.57 s,respectively.Uniquely,at 580 nm,the responsivity of fabricated devices is one to four orders of magnitude higher than that of the photodetectors based on TiO_(2),Ga_(2)O_(3),and other heterojunctions.The excellent optoelectronic characteristics of the TiO_(2)@GaO_(x)N_(y)-Ag heterojunction device could be mainly attributed to the synergistic effect of the type-Ⅱband structure of the metal-semiconductor-metal heterojunction and the plasmon resonance effect of Ag,which not only effectively promotes the separation of photogenerated carriers but also reduces the recombination rate.It is fur-ther illuminated by finite difference time domain method(FDTD)simulation and photoelectric measurements.The TiO_(2)@GaO_(x)N_(y)-Ag arrays with high-efficiency detection are suitable candidates for applications in energy-saving communica-tion,imaging,and sensing networks.展开更多
Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is stil...Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the “all-in-one” defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultraactive coordinated environment(M–N_(x), M–C_(2)N_(2), M–O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra(fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C_(3)N_(4) “customization”, motivating more profound thinking and flourishing research outputs on g-C_(3)N_(4)-based photocatalysis.展开更多
The rhombohedralα-GeTe can be approximated as a slightly distorted rock-salt structure along its[111]direction and possesses superb thermoelectric performance.However,the role of such a ferroelectric-like structural ...The rhombohedralα-GeTe can be approximated as a slightly distorted rock-salt structure along its[111]direction and possesses superb thermoelectric performance.However,the role of such a ferroelectric-like structural distortion on its transport properties remains unclear.Herein,we performed a systematic study on the crystal structure and electronic band structure evolutions of Ge_(1-x)Sn_(x)Te alloys where the degree of ferroelectric distortion is continuously tuned.It is revealed that the band gap is maximized while multiple valence bands are converged at x=0.6,where the ferroelectric distortion is the least but still works.Once undistorted,the band gap is considerably reduced,and the valence bands are largely separated again.Moreover,near the ferro-to-paraelectric phase transition Curie temperature,the lattice thermal conductivity reaches its minima because of significant lattice softening enabled by ferroelectric instability.We predict a peak ZT value of 2.6 at 673 K inα-GeTe by use of proper dopants which are powerful in suppressing the excess hole concentrations but meanwhile exert little influence on the ferroelectric distortion.展开更多
Directional solidification experiments on Pb-Bi peritectic alloys were carried out at very low growth rate (v=0.5 μm/s) and high temperature gradient (G=35 K/mm) in an improved Bridgman furnace. The banding struc...Directional solidification experiments on Pb-Bi peritectic alloys were carried out at very low growth rate (v=0.5 μm/s) and high temperature gradient (G=35 K/mm) in an improved Bridgman furnace. The banding structures were observed in both hypoperitectic and hyperperitectic compositions (Pb-xBi, x=26%, 28%, 30% and 34%). Tree-like primary α phase in the center of the sample surrounded by the peritectic β phase matrix was also observed, resulting from the melt convection. The banding microstructure, however, is found to be transient after the tree-like structure and only the peritectic phase forms after a few bands. Composition variations in the banding structure are measured to determine the nucleation undercooling for both α and β phases. In a finite length sample, convection is shown to lead only to the transient formation of bands. In this transient banding regime, only a few bands with a variable width are formed, and this transient banding process can occur over a wide range of compositions inside the two-phase peritectic region.展开更多
Valleytronics materials are a kind of special semiconductors which can host multiple symmetry-connected and wellseparated electron or hole pockets in the Brillouin zone when the system is slightly n or p doped. Since ...Valleytronics materials are a kind of special semiconductors which can host multiple symmetry-connected and wellseparated electron or hole pockets in the Brillouin zone when the system is slightly n or p doped. Since the low-energy particles residing in these pockets generally are not easily scattered to each other by small perturbations, they are endowed with an additional valley degree of freedom. Analogous to spin, the valley freedom can be used to process information,leading to the concept of valleytronics. The prerequisite for valleytronics is the generation of valley polarization. Thus,a focus in this field is achieving the electric generation of valley polarization, especially the static generation by the gate electric field alone. In this work, we briefly review the latest progress in this research direction, focusing on the concepts of the couplings between valley and layer, i.e., the valley–layer coupling which permits the gate-field control of the valley polarization, the couplings between valley, layer, and spin in magnetic systems, the physical properties, the novel designing schemes for electronic devices, and the material realizations of the gate-controlled valleytronics materials.展开更多
Kagome materials are a class of material with a lattice structure composed of corner-sharing triangles that produce various exotic electronic phenomena,such as Dirac fermions,van Hove singularities,and flat bands.Howe...Kagome materials are a class of material with a lattice structure composed of corner-sharing triangles that produce various exotic electronic phenomena,such as Dirac fermions,van Hove singularities,and flat bands.However,most of the known kagome materials have a flat band detached from the Fermi energy,which limits the investigation of the emergent flat band physics.In this work,by combining soft x-ray angle-resolved photoemission spectroscopy(ARPES)and the first-principles calculations,the electronic structure is investigated of a novel kagome metal CeNi_(5) with a clear dispersion along the kz direction and a Fermi level flat band in theΓ–K–M–Γplane.Besides,resonant ARPES experimental results indicate that the valence state of Ce ions is close to 4^(+),which is consistent with the transport measurement result.Our results demonstrate the unique electronic properties of CeNi_(5) as a new kagome metal and provide an ideal platform for exploring the flat band physics and the interactions between different types of flat bands by tuning the valence state of Ce ions.展开更多
Intercalated transition metal dichalcogenides(TMDCs)attract much attention due to their rich properties and potential applications.In this article,we grew successfully high-quality V_(1/3)TaS_(2) crystals by a vapor t...Intercalated transition metal dichalcogenides(TMDCs)attract much attention due to their rich properties and potential applications.In this article,we grew successfully high-quality V_(1/3)TaS_(2) crystals by a vapor transport method.We measured the magnetization,longitudinal resistivityρxx(T,H),Hall resistivityρxy(T,H),as well as performed calculations of the electronic band structure.It was found that V_(1/3)TaS_(2) is an A-type antiferromagnet with the Neel temperature T_(N)=6.20 K,and exhibits a negative magnetoresistance(MR)near T_(N).Both band structure calculations and Hall resistivity measurements demonstrated it is a magnetic semimetal.展开更多
The kagome system has attracted great interest in condensed matter physics due to its unique structure that canhost various exotic states such as superconductivity(SC),charge density waves(CDWs)and nontrivial topologi...The kagome system has attracted great interest in condensed matter physics due to its unique structure that canhost various exotic states such as superconductivity(SC),charge density waves(CDWs)and nontrivial topological states.The topological semimetal RbTi_(3)Bi_(5)consisting of a Ti kagome layer shares a similar crystal structure to the topologicalcorrelated materials AV_(3)Sb_(5)(A=K,Rb,Cs)but without the absence of CDW and SC.Systematic de Haas-van Alphenoscillation measurements are performed on single crystals of RbTi_(3)Bi_(5)to pursue nontrivial topological physics and exoticstates.Combining this with theoretical calculations,the detailed Fermi surface topology and band structure are investigated.A two-dimensional Fermi pocket b is revealed with a light effective mass,consistent with the semimetal predictions.TheLandau fan diagram of RbTi_(3)Bi_(5)reveals a zero Berry phase for the b oscillation in contrast to that of CsTi_(3)Bi_(5).Theseresults suggest that kagome RbTi_(3)Bi_(5)is a good candidate for exploring nontrivial topological exotic states and topologicalcorrelated physics.展开更多
The choices of proper dopants and doping sites significantly influence the doping efficiency.In this work,using doping in Al N as an example,we discuss how to choose dopants and doping sites in semiconductors to creat...The choices of proper dopants and doping sites significantly influence the doping efficiency.In this work,using doping in Al N as an example,we discuss how to choose dopants and doping sites in semiconductors to create shallow defect levels.By comparing the defect properties of C_(N),O_(N),Mg_(Al),and Si_(Al)in AlN and analyzing the pros and cons of different doping approaches from the aspects of size mismatch between dopant and host elements,electronegativity difference and perturbation to the band edge states after the substitution,we propose that Mg_(Al)and Si_(Al)should be the best dopants and doping sites for p-type and n-type doping,respectively.Further first-principles calculations verify our predictions as these defects present lower formation energies and shallower defect levels.The defect charge distributions also show that the band edge states,which mainly consist of N-s and p orbitals,are less perturbed when Al is substituted,therefore,the derived defect states turn out to be delocalized,opposite to the situation when N is substituted.This approach of analyzing the band structure of the host material and choosing dopants and doping sites to minimize the perturbation on the host band structure is general and can provide reliable estimations for finding shallow defect levels in semiconductors.展开更多
Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i...Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i.e. V-N and Cr-C) and non-compensated (i.e. V-C and Cr-N) codoped anatase TiO2 by performing extensive density functional theory calculations. Theoretical results show that oxygen vacancy prefers to the neighboring site of metal dopant (i.e. V or Cr atom). After introduction of oxygen vacancy, the unoccupied impurity bands located within band gap of these codoped TiO2 will be filled with electrons, and the posi- tion of conduction band offset does not change obviously, which result in the reduction of photoinduced carrier recombination and the good performance for hydrogen production via water splitting. Moreover, we find that oxygen vacancy is easily introduced in V-N codoped TiO2 under O-poor condition. These theoretical insights are helpful for designing codoped TiO2 with high photoelectrochemical performance.展开更多
This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that th...This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of im-purity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of im-purity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result. Therefore, the cause of absorption in visible light might be the isolated impurity atom 2p states in band-gap rather than the band-gap narrowing.展开更多
The effect of Cr/Mn segregation on the abnormal banded structure of high carbon bearing steel was studied by reheating and hot rolling.With the use of an optical microscope, scanning electron microscope, transmission ...The effect of Cr/Mn segregation on the abnormal banded structure of high carbon bearing steel was studied by reheating and hot rolling.With the use of an optical microscope, scanning electron microscope, transmission electron microscope, and electron probe microanalyzer, the segregation characteristics of alloying elements in cast billet and their relationship with hot-rolled plate banded structure were revealed.The formation causes of an abnormal banded structure and the elimination methods were analyzed.Results indicate the serious positive segregation of C, Cr, and Mn alloy elements in the billet.Even distribution of Cr/Mn elements could not be achieved after 10 h of heat preservation at 1200℃, and the spacing of the element aggregation area increased, but the segregation index of alloy elements decreased.Obvious alloying element segregation characteristics are present in the banded structure of the hot-rolled plate.This distinct white band is composed of martensitic phases.The formation of this abnormal pearlite–martensite banded structure is due to the interaction between the undercooled austenite transformation behavior of hot-rolled metal and the segregation of its alloying elements.Under the air cooling after rolling, controlling the segregation index of alloy elements can reduce or eliminate the abnormal banded structure.展开更多
A multiple monopole (or multipole) method based on the generalized mul- tipole technique (GMT) is proposed to calculate the band structures of scalar waves in two-dimensional phononic crystals which are composed o...A multiple monopole (or multipole) method based on the generalized mul- tipole technique (GMT) is proposed to calculate the band structures of scalar waves in two-dimensional phononic crystals which are composed of arbitrarily shaped cylinders embedded in a host medium. In order to find the eigenvalues of the problem, besides the sources used to expand the wave field, an extra monopole source is introduced which acts as the external excitation. By varying the frequency of the excitation, the eigenvalues can be localized as the extreme points of an appropriately chosen function. By sweeping the frequency range of interest and sweeping the boundary of the irreducible first Brillouin zone, the band structure is obtained. Some numerical examples are presented to validate the proposed method.展开更多
A new intermetallic compound, Sm3In5, has been synthesized by solid-state reaction of the corresponding pure elements in a welded niobium tube at high temperature. Its crystal structure was established by single-cryst...A new intermetallic compound, Sm3In5, has been synthesized by solid-state reaction of the corresponding pure elements in a welded niobium tube at high temperature. Its crystal structure was established by single-crystal X-ray diffraction. Sm3In5 crystallizes in orthorhombic, space group Cmcm with a = 10.0137(8), b = 8.1211(7), c = 10.3858(8) A, V = 844.60(1) A^3, Z = 4, Mr = 1025.15, Dc = 8.062 g/cm^3, μ = 33.791 mm^-1, F(000) = 1724, the final R = 0.0346 and wR = 0.0775 for 533 observed reflections with I 〉 2σ(I). The structure of Sm3In5 belongs to the modified Pu3Pd5 type. It is isostructural with La3In5 and β-Y3In5, containing one-dimensional (1D) [In5] cluster chains along the c-axis, which are weakly interconnected via In-In bonds (3.345A) to form a three-dimensional (3D) structure. The samarium cations are located at the voids between the 1D [In5] cluster chains. Band structure calculations based on Density Function Theory (DFT) method indicate that Sm3In5 is metallic.展开更多
Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthe...Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthesis of perovskite nanostructures have been made towards potential device applications.The engineering of their band structures holds great promise in the rational tuning of the electronic and optical properties of perovskite nanostructures,which is one of the keys to achieving efficient and multifunctional optoelectronic devices.In this article,we summarize recent advances in band structure engineering of perovskite nanostructures.A survey of bandgap engineering of nanostructured perovskites is firstly presented from the aspects of dimensionality tailoring,compositional substitution,phase segregation and transition,as well as strain and pressure stimuli.The strategies of electronic doping are then reviewed,including defect-induced self-doping,inorganic or organic molecules-based chemical doping,and modification by metal ions or nanostructures.Based on the bandgap engineering and electronic doping,discussions on engineering energy band alignments in perovskite nanostructures are provided for building high-performance perovskite p-n junctions and heterostructures.At last,we provide our perspectives in engineering band structures of perovskite nanostructures towards future low-energy optoelectronics technologies.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.32250410309 and 52105582)Natural Science Foundation of Guangdong Province(Grant No.2022A1515010894 and 2022B0303040002)+1 种基金Fundamental Research Foundation of Shenzhen(JCYJ20210324095210030 and JCYJ20220818095810023)Shenzhen-Hong Kong-Macao S&T Program(Category C:SGDX20210823103200004)
文摘Extending the ionic conductivity is the pre-requisite of electrolytes in fuel cell technology for high-electrochemical performance.In this regard,the introduction of semiconductor-oxide materials and the approach of heterostructure formation by modulating energy bands to enhance ionic conduction acting as an electrolyte in fuel cell-device.Semiconductor(n-type;SnO_(2))plays a key role by introducing into p-type SrFe_(0.2)Ti_(0.8)O_(3-δ)(SFT)semiconductor perovskite materials to construct p-n heterojunction for high ionic conductivity.Therefore,two different composites of SFT and SnO_(2)are constructed by gluing p-and n-type SFT-SnO_(2),where the optimal composition of SFT-SnO_(2)(6∶4)heterostructure electrolyte-based fuel cell achieved excellent ionic conductivity 0.24 S cm^(-1)with power-output of 1004 mW cm^(-2)and high OCV 1.12 V at a low operational temperature of 500℃.The high power-output and significant ionic conductivity with durable operation of 54 h are accredited to SFT-SnO_(2)heterojunction formation including interfacial conduction assisted by a built-in electric field in fuel cell device.Moreover,the fuel conversion efficiency and considerable Faradaic efficiency reveal the compatibility of SFT-SnO_(2)heterostructure electrolyte and ruled-out short-circuiting issue.Further,the first principle calculation provides sufficient information on structure optimization and energy-band structure modulation of SFT-SnO_(2).This strategy will provide new insight into semiconductor-based fuel cell technology to design novel electrolytes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11904261 and 11904259).
文摘Materials with kagome lattices have attracted significant research attention due to their nontrivial features in energy bands.We theoretically investigate the evolution of electronic band structures of kagome lattices in response to uniaxial strain using both a tight-binding model and an antidot model based on a periodic muffin-tin potential.It is found that the Dirac points move with applied strain.Furthermore,the flat band of unstrained kagome lattices is found to develop into a highly anisotropic shape under a stretching strain along y direction,forming a partially flat band with a region dispersionless along ky direction while dispersive along kx direction.Our results shed light on the possibility of engineering the electronic band structures of kagome materials by mechanical strain.
文摘The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum dot(QDs)materials in a simple and convenient way to form a heterogeneous structure.Various performance enhancements have been realized through the formation of typeⅡenergy bands in heterostructures,opening up new research directions for the future development of photodetector devices.This work successfully fabricated a high-sensitivity photodetector based on WS_(2)QDs/GaAs NWs heterostructure.Under 660 nm laser excitation,the photodetector exhibits a responsivity of 368.07 A/W,a detectivity of 2.7×10^(12)Jones,an external quantum efficiency of 6.47×10^(2)%,a low-noise equivalent power of 2.27×10^(-17)W·Hz^(-1/2),a response time of 0.3 s,and a recovery time of 2.12 s.This study provides a new solution for the preparation of high-performance GaAs detectors and promotes the development of optoelectronic devices for GaAs NWs.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61991441 and 62004218)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB01000000)Youth Innovation Promotion Association Chinese Academy of Sciences (Grant No. 2021005)。
文摘Band structure analysis holds significant importance for understanding the optoelectronic characteristics of semiconductor structures and exploring their potential applications in practice. For quantum well structures, the energy of carriers in the well splits into discrete energy levels due to the confinement of barriers in the growth direction. However, the discrete energy levels obtained at a fixed wave vector cannot accurately reflect the actual energy band structure. In this work, the band structure of the type-II quantum wells is reanalyzed. When the wave vectors of the entire Brillouin region(corresponding to the growth direction) are taken into account, the quantized energy levels of the carriers in the well are replaced by subbands with certain energy distributions. This new understanding of the energy bands of low-dimensional structures not only helps us to have a deeper cognition of the structure, but also may overturn many viewpoints in traditional band theories and serve as supplementary to the band theory of low-dimensional systems.
基金Youth Innovation Promotion Association of the Chinese Academy of Sciences,Grant/Award Number:2021174National Natural Science Foundation of China,Grant/Award Number:51902326Natural Science Foundation of Shanxi Province,Grant/Award Numbers:201901D211588,20210302124421。
文摘Transition-metal phosphides(TMPs)with high catalytic activity are widely used in the design of electrodes for water splitting.However,a major challenge is how to achieve the trade-off between activity and stability of TMPs.Herein,a novel method for synthesizing CoP nanoparticles encapsu-lated in a rich-defect carbon shell(CoP/DCS)is developed through the self-assembly of modified polycyclic aromatic molecules.The graft and removal of high-activity C-N bonds of aromatic molecules render the controllable design of crystallite defects of carbon shell.The density functional theory calculation indicates that the carbon defects with unpaired electrons could effectively tailor the band structure of CoP.Benefiting from the improved activity and corrosion resistance,the CoP/DCS delivers outstanding difunctional hydrogen evolution reaction(88 mV)and oxygen evolution reaction(251 mV)performances at 10 mA cm^(−2)current density.Furthermore,the coupled water electrolyzer with CoP/DCS as both the cathode and anode presents ultralow cell voltages of 1.49 V to achieve 10 mA cm^(−2)with long-time stability.This strategy to improve TMPs electrocatalyst with rich-DCS and heterogeneous structure will inspire the design of other transition metal compound electrocatalysts for water splitting.
基金supported by National Natural Science Foundation of China(Nos.62027818,61874034,and 51861135105)Natural Science Foundation of Shanghai(No.18ZR1405000)Shanghai Science and Technology Innovation Program(No.19520711500).
文摘In this work,we reported a high-performance-based ultraviolet-visible(UV-VIS)photodetector based on a TiO_(2)@GaO_(x)N_(y)-Ag heterostructure.Ag particles were introduced into TiO_(2)@GaO_(x)N_(y)to enhance the visible light detection perfor-mance of the heterojunction device.At 380 nm,the responsivity and detectivity of TiO_(2)@GaO_(x)N_(y)-Ag were 0.94 A/W and 4.79×109 Jones,respectively,and they increased to 2.86 A/W and 7.96×1010 Jones at 580 nm.The rise and fall times of the response were 0.19/0.23 and 0.50/0.57 s,respectively.Uniquely,at 580 nm,the responsivity of fabricated devices is one to four orders of magnitude higher than that of the photodetectors based on TiO_(2),Ga_(2)O_(3),and other heterojunctions.The excellent optoelectronic characteristics of the TiO_(2)@GaO_(x)N_(y)-Ag heterojunction device could be mainly attributed to the synergistic effect of the type-Ⅱband structure of the metal-semiconductor-metal heterojunction and the plasmon resonance effect of Ag,which not only effectively promotes the separation of photogenerated carriers but also reduces the recombination rate.It is fur-ther illuminated by finite difference time domain method(FDTD)simulation and photoelectric measurements.The TiO_(2)@GaO_(x)N_(y)-Ag arrays with high-efficiency detection are suitable candidates for applications in energy-saving communica-tion,imaging,and sensing networks.
基金the support of the Australia Research Council (ARC) through the Discovery Project (DP230101040)the Natural Science Foundation of Shandong Province (ZR2022QB139, No. ZR2020KF025)+3 种基金the Starting Research Fund (Grant No. 20210122) from the Ludong Universitythe Natural Science Foundation of China (12274190) from the Ludong Universitythe support of the Shandong Youth Innovation Team Introduction and Education Programthe Special Fund for Taishan Scholars Project (No. tsqn202211186) in Shandong Province。
文摘Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the “all-in-one” defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultraactive coordinated environment(M–N_(x), M–C_(2)N_(2), M–O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra(fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C_(3)N_(4) “customization”, motivating more profound thinking and flourishing research outputs on g-C_(3)N_(4)-based photocatalysis.
基金the financial support from the National Natural Science Foundation of China(Grant No.52171221)the National Key Research and Development Program of China(Grant No.2019YFA0704900)the support from the Core Facility of Wuhan University for their assistance with EPMA analysis
文摘The rhombohedralα-GeTe can be approximated as a slightly distorted rock-salt structure along its[111]direction and possesses superb thermoelectric performance.However,the role of such a ferroelectric-like structural distortion on its transport properties remains unclear.Herein,we performed a systematic study on the crystal structure and electronic band structure evolutions of Ge_(1-x)Sn_(x)Te alloys where the degree of ferroelectric distortion is continuously tuned.It is revealed that the band gap is maximized while multiple valence bands are converged at x=0.6,where the ferroelectric distortion is the least but still works.Once undistorted,the band gap is considerably reduced,and the valence bands are largely separated again.Moreover,near the ferro-to-paraelectric phase transition Curie temperature,the lattice thermal conductivity reaches its minima because of significant lattice softening enabled by ferroelectric instability.We predict a peak ZT value of 2.6 at 673 K inα-GeTe by use of proper dopants which are powerful in suppressing the excess hole concentrations but meanwhile exert little influence on the ferroelectric distortion.
基金Project (20110491492) supported by the China Postdoctoral Science FoundationProject (20114BAB216017) supported by the Natural Science Foundation of Jiangxi Province, ChinaProject (GJJ12035) supported by the Science Foundation of the Educational Department of Jiangxi Province, China
文摘Directional solidification experiments on Pb-Bi peritectic alloys were carried out at very low growth rate (v=0.5 μm/s) and high temperature gradient (G=35 K/mm) in an improved Bridgman furnace. The banding structures were observed in both hypoperitectic and hyperperitectic compositions (Pb-xBi, x=26%, 28%, 30% and 34%). Tree-like primary α phase in the center of the sample surrounded by the peritectic β phase matrix was also observed, resulting from the melt convection. The banding microstructure, however, is found to be transient after the tree-like structure and only the peritectic phase forms after a few bands. Composition variations in the banding structure are measured to determine the nucleation undercooling for both α and β phases. In a finite length sample, convection is shown to lead only to the transient formation of bands. In this transient banding regime, only a few bands with a variable width are formed, and this transient banding process can occur over a wide range of compositions inside the two-phase peritectic region.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12004035)the National Natural Science Fund for Excellent Young Scientists Fund Program(Overseas)。
文摘Valleytronics materials are a kind of special semiconductors which can host multiple symmetry-connected and wellseparated electron or hole pockets in the Brillouin zone when the system is slightly n or p doped. Since the low-energy particles residing in these pockets generally are not easily scattered to each other by small perturbations, they are endowed with an additional valley degree of freedom. Analogous to spin, the valley freedom can be used to process information,leading to the concept of valleytronics. The prerequisite for valleytronics is the generation of valley polarization. Thus,a focus in this field is achieving the electric generation of valley polarization, especially the static generation by the gate electric field alone. In this work, we briefly review the latest progress in this research direction, focusing on the concepts of the couplings between valley and layer, i.e., the valley–layer coupling which permits the gate-field control of the valley polarization, the couplings between valley, layer, and spin in magnetic systems, the physical properties, the novel designing schemes for electronic devices, and the material realizations of the gate-controlled valleytronics materials.
基金Project support by the Science Fund from Shanghai Committee of Science and Technology,China (Grant No.23JC1403300)the Shanghai Municipal Science and Technology Major Project,China+3 种基金the TDLI Starting up Grant,the National Natural Science Foundation of China (Grant Nos.12374063,12204223,and 23Z990202580)the Fund from the Ministry of Science and Technology of China (Grant No.2023YFA1407400)the Shanghai Natural Science Fund for Original Exploration Program,China (Grant No.23ZR1479900)Shanghai Talent Program,China。
文摘Kagome materials are a class of material with a lattice structure composed of corner-sharing triangles that produce various exotic electronic phenomena,such as Dirac fermions,van Hove singularities,and flat bands.However,most of the known kagome materials have a flat band detached from the Fermi energy,which limits the investigation of the emergent flat band physics.In this work,by combining soft x-ray angle-resolved photoemission spectroscopy(ARPES)and the first-principles calculations,the electronic structure is investigated of a novel kagome metal CeNi_(5) with a clear dispersion along the kz direction and a Fermi level flat band in theΓ–K–M–Γplane.Besides,resonant ARPES experimental results indicate that the valence state of Ce ions is close to 4^(+),which is consistent with the transport measurement result.Our results demonstrate the unique electronic properties of CeNi_(5) as a new kagome metal and provide an ideal platform for exploring the flat band physics and the interactions between different types of flat bands by tuning the valence state of Ce ions.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1403202)the National Natural Science Foundation of China(Grant Nos.NSFC-12074335,11974095,5177115,11974095,and 12188101)the Natural Science Foundation of Shaanxi Province of China(Grant No.2022JM-028).
文摘Intercalated transition metal dichalcogenides(TMDCs)attract much attention due to their rich properties and potential applications.In this article,we grew successfully high-quality V_(1/3)TaS_(2) crystals by a vapor transport method.We measured the magnetization,longitudinal resistivityρxx(T,H),Hall resistivityρxy(T,H),as well as performed calculations of the electronic band structure.It was found that V_(1/3)TaS_(2) is an A-type antiferromagnet with the Neel temperature T_(N)=6.20 K,and exhibits a negative magnetoresistance(MR)near T_(N).Both band structure calculations and Hall resistivity measurements demonstrated it is a magnetic semimetal.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFA1406500)the National Natural Science Foundation of China(Grant Nos.12174454,U2130101,and 92165204)+2 种基金the Guangdong Basic and Applied Basic Research Funds(Grant Nos.2024B1515020040 and 2022A1515010035)Guangzhou Basic and Applied Basic Research Funds(Grant No.2024A04J6417)Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices(Grant No.2022B1212010008).
文摘The kagome system has attracted great interest in condensed matter physics due to its unique structure that canhost various exotic states such as superconductivity(SC),charge density waves(CDWs)and nontrivial topological states.The topological semimetal RbTi_(3)Bi_(5)consisting of a Ti kagome layer shares a similar crystal structure to the topologicalcorrelated materials AV_(3)Sb_(5)(A=K,Rb,Cs)but without the absence of CDW and SC.Systematic de Haas-van Alphenoscillation measurements are performed on single crystals of RbTi_(3)Bi_(5)to pursue nontrivial topological physics and exoticstates.Combining this with theoretical calculations,the detailed Fermi surface topology and band structure are investigated.A two-dimensional Fermi pocket b is revealed with a light effective mass,consistent with the semimetal predictions.TheLandau fan diagram of RbTi_(3)Bi_(5)reveals a zero Berry phase for the b oscillation in contrast to that of CsTi_(3)Bi_(5).Theseresults suggest that kagome RbTi_(3)Bi_(5)is a good candidate for exploring nontrivial topological exotic states and topologicalcorrelated physics.
基金supported by the National Natural Science Foundation of China(Grants No.11991060,No.12088101,No.U2230402,and No.12304006)the Natural Science Foundation of WIUCAS(Grants No.WIUCASQD2023004)。
文摘The choices of proper dopants and doping sites significantly influence the doping efficiency.In this work,using doping in Al N as an example,we discuss how to choose dopants and doping sites in semiconductors to create shallow defect levels.By comparing the defect properties of C_(N),O_(N),Mg_(Al),and Si_(Al)in AlN and analyzing the pros and cons of different doping approaches from the aspects of size mismatch between dopant and host elements,electronegativity difference and perturbation to the band edge states after the substitution,we propose that Mg_(Al)and Si_(Al)should be the best dopants and doping sites for p-type and n-type doping,respectively.Further first-principles calculations verify our predictions as these defects present lower formation energies and shallower defect levels.The defect charge distributions also show that the band edge states,which mainly consist of N-s and p orbitals,are less perturbed when Al is substituted,therefore,the derived defect states turn out to be delocalized,opposite to the situation when N is substituted.This approach of analyzing the band structure of the host material and choosing dopants and doping sites to minimize the perturbation on the host band structure is general and can provide reliable estimations for finding shallow defect levels in semiconductors.
基金This work was supported by the National Natural Sci- ence Foundation of China (No.11034006, No.21273208, and No.21473168), the Anhui Provincial Natural Sci- ence Foundation (No.1408085QB26), the hmdamental Research Funds for the Central Universities, the China Postdoctoral Science Foundation (No.2012M511409), and the Supercomputing Center of Chinese Academy of Sciences, Shanghai and USTC Supercomputer Cen- ters.
文摘Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i.e. V-N and Cr-C) and non-compensated (i.e. V-C and Cr-N) codoped anatase TiO2 by performing extensive density functional theory calculations. Theoretical results show that oxygen vacancy prefers to the neighboring site of metal dopant (i.e. V or Cr atom). After introduction of oxygen vacancy, the unoccupied impurity bands located within band gap of these codoped TiO2 will be filled with electrons, and the posi- tion of conduction band offset does not change obviously, which result in the reduction of photoinduced carrier recombination and the good performance for hydrogen production via water splitting. Moreover, we find that oxygen vacancy is easily introduced in V-N codoped TiO2 under O-poor condition. These theoretical insights are helpful for designing codoped TiO2 with high photoelectrochemical performance.
基金Project (No. 2004AA32G040) supported by the Hi-Tech Researchand Development Program (863) of China
文摘This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of im-purity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of im-purity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result. Therefore, the cause of absorption in visible light might be the isolated impurity atom 2p states in band-gap rather than the band-gap narrowing.
文摘The effect of Cr/Mn segregation on the abnormal banded structure of high carbon bearing steel was studied by reheating and hot rolling.With the use of an optical microscope, scanning electron microscope, transmission electron microscope, and electron probe microanalyzer, the segregation characteristics of alloying elements in cast billet and their relationship with hot-rolled plate banded structure were revealed.The formation causes of an abnormal banded structure and the elimination methods were analyzed.Results indicate the serious positive segregation of C, Cr, and Mn alloy elements in the billet.Even distribution of Cr/Mn elements could not be achieved after 10 h of heat preservation at 1200℃, and the spacing of the element aggregation area increased, but the segregation index of alloy elements decreased.Obvious alloying element segregation characteristics are present in the banded structure of the hot-rolled plate.This distinct white band is composed of martensitic phases.The formation of this abnormal pearlite–martensite banded structure is due to the interaction between the undercooled austenite transformation behavior of hot-rolled metal and the segregation of its alloying elements.Under the air cooling after rolling, controlling the segregation index of alloy elements can reduce or eliminate the abnormal banded structure.
基金supported by the National Natural Science Foundation of China(Nos.51178037 and10632020)the German Research Foundation(DFG)(Nos.ZH 15/11-1 and ZH 15/16-1)+1 种基金the International Bureau of the German Federal Ministry of Education and Research(BMBF)(No.CHN11/045)the National Basic Research Program of China(No.2010CB732104)
文摘A multiple monopole (or multipole) method based on the generalized mul- tipole technique (GMT) is proposed to calculate the band structures of scalar waves in two-dimensional phononic crystals which are composed of arbitrarily shaped cylinders embedded in a host medium. In order to find the eigenvalues of the problem, besides the sources used to expand the wave field, an extra monopole source is introduced which acts as the external excitation. By varying the frequency of the excitation, the eigenvalues can be localized as the extreme points of an appropriately chosen function. By sweeping the frequency range of interest and sweeping the boundary of the irreducible first Brillouin zone, the band structure is obtained. Some numerical examples are presented to validate the proposed method.
基金supported by the Youth Science Foundation of Jining University (2009QNKJ07 and 2009QNKJ04)
文摘A new intermetallic compound, Sm3In5, has been synthesized by solid-state reaction of the corresponding pure elements in a welded niobium tube at high temperature. Its crystal structure was established by single-crystal X-ray diffraction. Sm3In5 crystallizes in orthorhombic, space group Cmcm with a = 10.0137(8), b = 8.1211(7), c = 10.3858(8) A, V = 844.60(1) A^3, Z = 4, Mr = 1025.15, Dc = 8.062 g/cm^3, μ = 33.791 mm^-1, F(000) = 1724, the final R = 0.0346 and wR = 0.0775 for 533 observed reflections with I 〉 2σ(I). The structure of Sm3In5 belongs to the modified Pu3Pd5 type. It is isostructural with La3In5 and β-Y3In5, containing one-dimensional (1D) [In5] cluster chains along the c-axis, which are weakly interconnected via In-In bonds (3.345A) to form a three-dimensional (3D) structure. The samarium cations are located at the voids between the 1D [In5] cluster chains. Band structure calculations based on Density Function Theory (DFT) method indicate that Sm3In5 is metallic.
基金support from Australian Research Council (ARC, FT150100450, IH150100006 and CE170100039)support from the MCATM and the FLEET+1 种基金the support from Shenzhen Nanshan District Pilotage Team Program (LHTD20170006)support from Guangzhou Science and Technology Program (Grant No. 201804010322)
文摘Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthesis of perovskite nanostructures have been made towards potential device applications.The engineering of their band structures holds great promise in the rational tuning of the electronic and optical properties of perovskite nanostructures,which is one of the keys to achieving efficient and multifunctional optoelectronic devices.In this article,we summarize recent advances in band structure engineering of perovskite nanostructures.A survey of bandgap engineering of nanostructured perovskites is firstly presented from the aspects of dimensionality tailoring,compositional substitution,phase segregation and transition,as well as strain and pressure stimuli.The strategies of electronic doping are then reviewed,including defect-induced self-doping,inorganic or organic molecules-based chemical doping,and modification by metal ions or nanostructures.Based on the bandgap engineering and electronic doping,discussions on engineering energy band alignments in perovskite nanostructures are provided for building high-performance perovskite p-n junctions and heterostructures.At last,we provide our perspectives in engineering band structures of perovskite nanostructures towards future low-energy optoelectronics technologies.