A precise detection of the fault feature parameter of motor current is a new research hotspot in the broken rotor bar(BRB) fault diagnosis of induction motors. Discrete Fourier transform(DFT) is the most popular techn...A precise detection of the fault feature parameter of motor current is a new research hotspot in the broken rotor bar(BRB) fault diagnosis of induction motors. Discrete Fourier transform(DFT) is the most popular technique in this field, owing to low computation and easy realization. However, its accuracy is often limited by the data window length, spectral leakage, fence e ect, etc. Therefore, a new detection method based on a global optimization algorithm is proposed. First, a BRB fault current model and a residual error function are designed to transform the fault parameter detection problem into a nonlinear least-square problem. Because this optimization problem has a great number of local optima and needs to be resolved rapidly and accurately, a joint algorithm(called TR-MBPSO) based on a modified bare-bones particle swarm optimization(BPSO) and trust region(TR) is subsequently proposed. In the TR-MBPSO, a reinitialization strategy of inactive particle is introduced to the BPSO to enhance the swarm diversity and global search ability. Meanwhile, the TR is combined with the modified BPSO to improve convergence speed and accuracy. It also includes a global convergence analysis, whose result proves that the TR-MBPSO can converge to the global optimum with the probability of 1. Both simulations and experiments are conducted, and the results indicate that the proposed detection method not only has high accuracy of parameter estimation with short-time data window, e.g., the magnitude and frequency precision of the fault-related components reaches 10^(-4), but also overcomes the impacts of spectral leakage and non-integer-period sampling. The proposed research provides a new BRB detection method, which has enough precision to extract the parameters of the fault feature components.展开更多
Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is pro...Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is proposed that takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence,Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover, a circular crowded sorting approach is adopted to improve the uniformity of the population distribution.Finally, by combining the algorithm with control vector parameterization,an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems.展开更多
The Salp Swarm Algorithm(SSA)may have trouble in dropping into stagnation as a kind of swarm intelligence method.This paper developed an adaptive barebones salp swarm algorithm with quasi-oppositional-based learning t...The Salp Swarm Algorithm(SSA)may have trouble in dropping into stagnation as a kind of swarm intelligence method.This paper developed an adaptive barebones salp swarm algorithm with quasi-oppositional-based learning to compensate for the above weakness called QBSSA.In the proposed QBSSA,an adaptive barebones strategy can help to reach both accurate convergence speed and high solution quality;quasi-oppositional-based learning can make the population away from traping into local optimal and expand the search space.To estimate the performance of the presented method,a series of tests are performed.Firstly,CEC 2017 benchmark test suit is used to test the ability to solve the high dimensional and multimodal problems;then,based on QBSSA,an improved Kernel Extreme Learning Machine(KELM)model,named QBSSA–KELM,is built to handle medical disease diagnosis problems.All the test results and discussions state clearly that the QBSSA is superior to and very competitive to all the compared algorithms on both convergence speed and solutions accuracy.展开更多
构建一种儿科患者骨髓移植生存预测模型。利用Kaggle儿童骨髓移植数据集基于PSO-BP(Particle Swarm Optimized Back Propagation)神经网络构建预测模型。研究结果表明,预测模型AUC(Area Under the Curve)值为0.98,算法模型表现优秀,特...构建一种儿科患者骨髓移植生存预测模型。利用Kaggle儿童骨髓移植数据集基于PSO-BP(Particle Swarm Optimized Back Propagation)神经网络构建预测模型。研究结果表明,预测模型AUC(Area Under the Curve)值为0.98,算法模型表现优秀,特征重要性分析揭示了生存时间、复发和每公斤受体体重的CD34+细胞剂量等特征是骨髓移植儿童患者的生存预后最重要的影响因素。展开更多
基金Supported by Fundamental Research Funds for the Central Universities(Grant No.2017XKQY032)
文摘A precise detection of the fault feature parameter of motor current is a new research hotspot in the broken rotor bar(BRB) fault diagnosis of induction motors. Discrete Fourier transform(DFT) is the most popular technique in this field, owing to low computation and easy realization. However, its accuracy is often limited by the data window length, spectral leakage, fence e ect, etc. Therefore, a new detection method based on a global optimization algorithm is proposed. First, a BRB fault current model and a residual error function are designed to transform the fault parameter detection problem into a nonlinear least-square problem. Because this optimization problem has a great number of local optima and needs to be resolved rapidly and accurately, a joint algorithm(called TR-MBPSO) based on a modified bare-bones particle swarm optimization(BPSO) and trust region(TR) is subsequently proposed. In the TR-MBPSO, a reinitialization strategy of inactive particle is introduced to the BPSO to enhance the swarm diversity and global search ability. Meanwhile, the TR is combined with the modified BPSO to improve convergence speed and accuracy. It also includes a global convergence analysis, whose result proves that the TR-MBPSO can converge to the global optimum with the probability of 1. Both simulations and experiments are conducted, and the results indicate that the proposed detection method not only has high accuracy of parameter estimation with short-time data window, e.g., the magnitude and frequency precision of the fault-related components reaches 10^(-4), but also overcomes the impacts of spectral leakage and non-integer-period sampling. The proposed research provides a new BRB detection method, which has enough precision to extract the parameters of the fault feature components.
基金National Natural Science Foundations of China(Nos.61222303,21276078)National High-Tech Research and Development Program of China(No.2012AA040307)+1 种基金New Century Excellent Researcher Award Program from Ministry of Education of China(No.NCET10-0885)the Fundamental Research Funds for the Central Universities and Shanghai Leading Academic Discipline Project,China(No.B504)
文摘Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is proposed that takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence,Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover, a circular crowded sorting approach is adopted to improve the uniformity of the population distribution.Finally, by combining the algorithm with control vector parameterization,an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems.
基金supported by the National Natural Science Foundation of China(62076185,U1809209)supported by Zhejiang Provincial Natural Science Foundation of China(LY21F020030)+1 种基金Wenzhou Major Scientific and Technological Innovation Project(ZY2019019)Wenzhou Science and Technology Bureau(2018ZG016)。
文摘The Salp Swarm Algorithm(SSA)may have trouble in dropping into stagnation as a kind of swarm intelligence method.This paper developed an adaptive barebones salp swarm algorithm with quasi-oppositional-based learning to compensate for the above weakness called QBSSA.In the proposed QBSSA,an adaptive barebones strategy can help to reach both accurate convergence speed and high solution quality;quasi-oppositional-based learning can make the population away from traping into local optimal and expand the search space.To estimate the performance of the presented method,a series of tests are performed.Firstly,CEC 2017 benchmark test suit is used to test the ability to solve the high dimensional and multimodal problems;then,based on QBSSA,an improved Kernel Extreme Learning Machine(KELM)model,named QBSSA–KELM,is built to handle medical disease diagnosis problems.All the test results and discussions state clearly that the QBSSA is superior to and very competitive to all the compared algorithms on both convergence speed and solutions accuracy.
文摘构建一种儿科患者骨髓移植生存预测模型。利用Kaggle儿童骨髓移植数据集基于PSO-BP(Particle Swarm Optimized Back Propagation)神经网络构建预测模型。研究结果表明,预测模型AUC(Area Under the Curve)值为0.98,算法模型表现优秀,特征重要性分析揭示了生存时间、复发和每公斤受体体重的CD34+细胞剂量等特征是骨髓移植儿童患者的生存预后最重要的影响因素。
文摘差分进化(differential evolution,DE)算法简单高效,但其控制参数和差分变异策略对待解的优化问题较为敏感,对问题的依赖性较强.为克服这一缺陷,提出了一种新的基于三角的骨架差分进化算法(bare-bones differential evolution algorithm based on trigonometry,tBBDE),并使用随机泛函理论分析了算法的收敛性.算法采用了三角高斯变异策略以及三元交叉和交叉概率自适应策略对个体进行更新,并在收敛停滞时进行种群扰动,算法不仅继承了骨架算法无参数的优点,而且还很好地保留了DE算法基于随机个体差异进行的特性.通过对包括单峰函数、多峰函数、偏移函数和高维函数的26个基准测试函数的仿真实验和分析,验证了新算法的有效性和可靠性,经与多种同类的骨架算法以及知名的DE算法在统计学上的分析比较,证明了该算法是一种具有竞争力的新算法.