In this work,the frequency dependence of ferroelectric and electrocaloric properties in barium titanate-based ceramics was studied based on Maxwell relations.It is found that the maximum and remnant polarization will ...In this work,the frequency dependence of ferroelectric and electrocaloric properties in barium titanate-based ceramics was studied based on Maxwell relations.It is found that the maximum and remnant polarization will decrease while the coercive field increases a lot with rising frequency from 0.1 to 10 Hz,indicating that polarization rotation and domain switching become difficult at high frequencies.The electrocaloric properties show the different frequency dependence at different phase structures.Isothermal entropy change(ΔS)and adiabatic temperature change(ΔT)are similar around/above Curie temperature(TCT,showing tiny frequency dependence.However,ΔS andΔT display the obvious frequency dependence below T_(C),especially in the orthorhombic–tetragonal phase-transition region with a stable ferroelectric phase,and this frequency dependence becomes more obvious under a low-electric field.It is also found that increasing the frequency can weaken the electric field dependence of electrocaloric strength.This work gives a general profile of frequency dependence for electrocaloric properties in ferroelectric ceramics.展开更多
Tetragonal barium titanate was synthesized from barium hydroxide octahydrate and titanium tetrachloride through a simple one-step hydrothermal method.The effect of different solvents on the crystal structure and morph...Tetragonal barium titanate was synthesized from barium hydroxide octahydrate and titanium tetrachloride through a simple one-step hydrothermal method.The effect of different solvents on the crystal structure and morphology of barium titanate nanoparticles during the hy-drothermal process was investigated.Except for ethylene glycol/water solvent,impurity-free barium titanate was synthesized in pure water,methanol/water,ethanol/water,and isopropyl alcohol/water mixed solvents.Compared with other alcohols,ethanol promotes the formation of a tetragonal structure.In addition,characterization studies confirm that particles synthesized in methanol/water,ethanol/water,and isopropyl al-cohol/water mixed solvents are smaller in size than those synthesized in pure water.In the case of alcohol-containing solvents,the particle size decreases in the order of isopropanol,ethanol,and methanol.Among all the media used in this study,ethanol/water is considered the optimum reaction media for barium titanate with high tetragonality(defined as the ratio of two lattice parameters c and a,c/a=1.0088)and small aver-age particle size(82 nm),which indicates its great application potential in multilayer ceramic capacitors.展开更多
As a kind of green concrete,the mechanical properties and durability of cemented gangue backfill material(CGBM)will be affected if they are in acid mine water with sulfate ions in the long term.To improve the performa...As a kind of green concrete,the mechanical properties and durability of cemented gangue backfill material(CGBM)will be affected if they are in acid mine water with sulfate ions in the long term.To improve the performance of CGBM in acid mine water with sulfate ions,CGBM specimens with different doses of barium hydroxide were immersed in sulfuric acid solutions of different concentrations for 270 days.The changes of mass,ultrasonic pulse velocity(UPV)and compressive strength of the specimens at different ages were analyzed.Scanning electron microscopy(SEM)and X-ray diffraction(XRD)were used to analyze the microstructure and composition of the specimens.The results show that incorporation of barium hydroxide into CGBM specimen can promote the formation of barium sulfate precipitation and inhibit the generation of corrosion products such as ettringite.Meanwhile,barium sulfate precipitation blocks the pore channel invaded by sulfuric acid solution,delaying the progress of corrosion reaction and making the interior of CGBM specimen more complete.And the specimen with 2.0 kg/m^(3)barium hydroxide was more effective in improving performance.This study provides a basis for the ratio design of CGBM in acid mine water with sulfate ions.展开更多
In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autoco...In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autocombustion method. X-ray diffraction (XRD), a scanning electronic microscopy ( SEM ), a physical properties measurement system (PPMS-9), and a vector network analyzer were used to analyze their structure, surface morphology, magnetic and absorbing properties, respectively. The results show that the absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with the pure M-type barium ferrite. The sample with the content of doped graphene oxide of 3% has the minimum reflectivity at 10 to 18 GHz frequencies. Hence, the doped graphene oxide effectively improves the absorbing properties of M-type barium ferrite.展开更多
The dielectric properties and phase transition characteristics of La2O3- and Sb2O3-doped barium strontium titanate ceramics prepared by solid state route were investigated. The microstructure was identified by X-ray d...The dielectric properties and phase transition characteristics of La2O3- and Sb2O3-doped barium strontium titanate ceramics prepared by solid state route were investigated. The microstructure was identified by X-ray diffraction method and scanning electron microscope was also employed to observe the surface morphologies. It is found that (La,Sb)-codoped barium strontium titanate ceramics exhibit typical perovskite structure and the average grain size decreases dramatically with increasing the content of Sb2O3. Both La3+ ions and Sb3+ ions occupy the A-sites in perovskite lattice. The dielectric constant and dielectric loss of barium strontium titanate based ceramics are obviously influenced by La2O3 as well as Sb2O3 addition content. The tetragonal-cubic phase transition of La2O3 modified barium strontium titanate ceramics is of second order and the Curie temperature shifts to lower value with increasing the La2O3 doping content. The phase transition of (La,Sb)-codoped barium strontium titanate ceramics diffuses and the deviation from Curie-Weiss law becomes more obvious with the increase in Sb2O3 concentration. The temperature corresponding to the dielectric constant maximum of (La,Sb)-codoped barium strontium titanate ceramics decreases with increasing the Sb2O3 content, which is attributed to the replacement of host ions by the Sb3+ ions.展开更多
基金support of the National Natural Science Foundation of China(Nos.12204104,12104093,52102126 and 52072075)the Natural Science Foundation of Fujian Province(Nos.2021J05122,2021J05123,2022J01087,2022J01552 and 2023J01259)Qishan Scholar Financial Support from Fuzhou University(No.GXRC-20099).
文摘In this work,the frequency dependence of ferroelectric and electrocaloric properties in barium titanate-based ceramics was studied based on Maxwell relations.It is found that the maximum and remnant polarization will decrease while the coercive field increases a lot with rising frequency from 0.1 to 10 Hz,indicating that polarization rotation and domain switching become difficult at high frequencies.The electrocaloric properties show the different frequency dependence at different phase structures.Isothermal entropy change(ΔS)and adiabatic temperature change(ΔT)are similar around/above Curie temperature(TCT,showing tiny frequency dependence.However,ΔS andΔT display the obvious frequency dependence below T_(C),especially in the orthorhombic–tetragonal phase-transition region with a stable ferroelectric phase,and this frequency dependence becomes more obvious under a low-electric field.It is also found that increasing the frequency can weaken the electric field dependence of electrocaloric strength.This work gives a general profile of frequency dependence for electrocaloric properties in ferroelectric ceramics.
基金supported by Chongqing Newcent New Materials Co.,Ltd.,China (No.2021GKF-0708).
文摘Tetragonal barium titanate was synthesized from barium hydroxide octahydrate and titanium tetrachloride through a simple one-step hydrothermal method.The effect of different solvents on the crystal structure and morphology of barium titanate nanoparticles during the hy-drothermal process was investigated.Except for ethylene glycol/water solvent,impurity-free barium titanate was synthesized in pure water,methanol/water,ethanol/water,and isopropyl alcohol/water mixed solvents.Compared with other alcohols,ethanol promotes the formation of a tetragonal structure.In addition,characterization studies confirm that particles synthesized in methanol/water,ethanol/water,and isopropyl al-cohol/water mixed solvents are smaller in size than those synthesized in pure water.In the case of alcohol-containing solvents,the particle size decreases in the order of isopropanol,ethanol,and methanol.Among all the media used in this study,ethanol/water is considered the optimum reaction media for barium titanate with high tetragonality(defined as the ratio of two lattice parameters c and a,c/a=1.0088)and small aver-age particle size(82 nm),which indicates its great application potential in multilayer ceramic capacitors.
基金sponsored by the National Natural Science Foundation of China(Grant No.51974192)the Distinguished Youth Funds of National Natural Science Foundation of China(Grant No.51925402)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering Project(2021SX-TD001).
文摘As a kind of green concrete,the mechanical properties and durability of cemented gangue backfill material(CGBM)will be affected if they are in acid mine water with sulfate ions in the long term.To improve the performance of CGBM in acid mine water with sulfate ions,CGBM specimens with different doses of barium hydroxide were immersed in sulfuric acid solutions of different concentrations for 270 days.The changes of mass,ultrasonic pulse velocity(UPV)and compressive strength of the specimens at different ages were analyzed.Scanning electron microscopy(SEM)and X-ray diffraction(XRD)were used to analyze the microstructure and composition of the specimens.The results show that incorporation of barium hydroxide into CGBM specimen can promote the formation of barium sulfate precipitation and inhibit the generation of corrosion products such as ettringite.Meanwhile,barium sulfate precipitation blocks the pore channel invaded by sulfuric acid solution,delaying the progress of corrosion reaction and making the interior of CGBM specimen more complete.And the specimen with 2.0 kg/m^(3)barium hydroxide was more effective in improving performance.This study provides a basis for the ratio design of CGBM in acid mine water with sulfate ions.
基金The National Natural Science Foundation of China(No.51205282)
文摘In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autocombustion method. X-ray diffraction (XRD), a scanning electronic microscopy ( SEM ), a physical properties measurement system (PPMS-9), and a vector network analyzer were used to analyze their structure, surface morphology, magnetic and absorbing properties, respectively. The results show that the absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with the pure M-type barium ferrite. The sample with the content of doped graphene oxide of 3% has the minimum reflectivity at 10 to 18 GHz frequencies. Hence, the doped graphene oxide effectively improves the absorbing properties of M-type barium ferrite.
基金Project (11KJB430007) supported by the University Natural Science Research Program of Jiangsu Province, ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
文摘The dielectric properties and phase transition characteristics of La2O3- and Sb2O3-doped barium strontium titanate ceramics prepared by solid state route were investigated. The microstructure was identified by X-ray diffraction method and scanning electron microscope was also employed to observe the surface morphologies. It is found that (La,Sb)-codoped barium strontium titanate ceramics exhibit typical perovskite structure and the average grain size decreases dramatically with increasing the content of Sb2O3. Both La3+ ions and Sb3+ ions occupy the A-sites in perovskite lattice. The dielectric constant and dielectric loss of barium strontium titanate based ceramics are obviously influenced by La2O3 as well as Sb2O3 addition content. The tetragonal-cubic phase transition of La2O3 modified barium strontium titanate ceramics is of second order and the Curie temperature shifts to lower value with increasing the La2O3 doping content. The phase transition of (La,Sb)-codoped barium strontium titanate ceramics diffuses and the deviation from Curie-Weiss law becomes more obvious with the increase in Sb2O3 concentration. The temperature corresponding to the dielectric constant maximum of (La,Sb)-codoped barium strontium titanate ceramics decreases with increasing the Sb2O3 content, which is attributed to the replacement of host ions by the Sb3+ ions.