Lack of dietary fiber contributes to many health issues, particularly chronic vascular diseases. Mixed linkage β-1.3 - 1.4 beta-glucan (beta-glucan, in this paper) is a confirmed beneficial ingredient for the human d...Lack of dietary fiber contributes to many health issues, particularly chronic vascular diseases. Mixed linkage β-1.3 - 1.4 beta-glucan (beta-glucan, in this paper) is a confirmed beneficial ingredient for the human diet through reduction of cholesterol and the glycemic index. Barley contains the highest beta-glucan content of all the grains, and in this study, a percentage of flour from two high beta glucan lines was, each, added to an array of wheat-based food products to measure how it impacted total dietary fiber. Results showed that beta-glucan content was higher in all the products containing the added high beta-glucan flour, along with increased total dietary fiber content. Protein content in the food products is also increased with the higher protein in the barley flours added. Beta-glucan content in the barley-added products increased to 1.2% - 4.0% versus 0.2% - 0.5% in the pure wheat products, while the dietary fibers increased to 3.5% - 24.4% versus 2.1% - 9.1% in pure wheat product controls. This research provided experimental evidence that using a high beta-glucan barley ingredient in food can increase dietary fiber to benefit health.展开更多
Barley grain is a valuable source ofβ-glucan,which is an important component of dietary fiber with significant human health benefits.Although the genetic basis ofβ-glucan biosynthesis has been widely studied,a genom...Barley grain is a valuable source ofβ-glucan,which is an important component of dietary fiber with significant human health benefits.Although the genetic basis ofβ-glucan biosynthesis has been widely studied,a genome-wide association study(GWAS)is still required for a scan of the candidate genes related to the complex quantitative trait based on the high-quality barley reference genome.In this study,a GWAS was conducted using a population composed of 87 barley landraces(39 hulled and 48 hulless,β-glucan from 2.07%to 6.56%)with 191,098 nucleotide polymorphisms(SNPs)markers to cover the chromosomes with the highest density.The population was divided into four sub-populations(POP1~POP4),and theβ-glucan content in POP2 was significantly higher than that in other groups,in which most of the hulless barley landraces are from Qinghai-Tibet Plateau in China.Among seven SNP markers identified by GWAS,two(SNP2 and SNP3)of them showed positive correlation toβ-glucan trait and the remaining five(SNP1,SNP4,SNP5,SNP6 and SNP7)showed the negative relationship.Two candidate genes linked to SNP7,HORVU7Hr1G000320 and HORVU7Hr1G000040,belong to the nucleotide triphosphate hydrolase super-family which is probable to affect the activities ofβ-glucan synthase.Another candidate gene associated with SNP1,HORVU1Hr1G000010,is possibly involved in sugar response.In conclusion,our results provide new insights into the genetic basis ofβ-glucan accumulation in barley grains,and the discovery of new SNP markers distributed in each chromosome and the associated candidate genes will be valuable for the breeding of functional barley varieties with high β-glucan.展开更多
The influences of N application rate, timing, sowing date and seeding rate on β-glucan and protein content in barley grains were studied through the field experiments in Hangzhou, China during 1997 -2001. Protein con...The influences of N application rate, timing, sowing date and seeding rate on β-glucan and protein content in barley grains were studied through the field experiments in Hangzhou, China during 1997 -2001. Protein content increased with N application rate and with N proportion applied at late stage. β-glucan content also responded significantly to N application rate and timing, but with different pattern with protein content. Of three N rate treatments, the medium N rate (135 kg ha-1) had the highest β-glucan content, being significantly higher than low N rate (90 kg ha-1) and no difference with high N rate (180 kg ha-1). A-mong three N timing treatments, two times of N top-dressing at both tillering and booting stage had significantly higher β-glucan content than once N top-dressing at tillering or booting stage. Sowing date has the dramatic effect on both β-glucan and protein content. Protein content decreased with the delayed sowing, and kernel weight showed opposite tendency. Either earlier or later sowing caused increased β-glucan content relative to sowing in early November, which is the normal date for barley sowing locally. Seeding rate had no significant influence on both β-glucan and protein content.展开更多
Eight two-rowed barley cultivars were grown at seven locations in the southern winter-barley zone of China. Mean grainβ-glucanase activity ranged from 39.89 U kg-1 for Suyin2 to 49.75 U kg-1 for Xi-umai3 in 8 cultiva...Eight two-rowed barley cultivars were grown at seven locations in the southern winter-barley zone of China. Mean grainβ-glucanase activity ranged from 39.89 U kg-1 for Suyin2 to 49.75 U kg-1 for Xi-umai3 in 8 cultivars grown at 7 locations, and from 38. 74 U kg-1 in Zhengzhou to 57. 96 U kg-1 in Putian among 7 locations on an average of all cultivars. Correspondingly, mean malt β-glucanase activity of 8 cultivars ranged from 313.33 U kg-1 for ZAU3 to 489. 89 U kg-1 for Daner Barley, and of 7 locations from 330.40 U kg-1 in Yancheng to 418. 24 U kg-1 in Putian. There were significant differences among cultivars and locations in maltβ-glucanase activities. The locations showed much larger variation in maltβ-glucanase activities than cultivars. The reduction of total β-glucan content after malting varied in both cultivars and locations, with a mean of 78.31%. The analysis of correlations showed that maltβ-glucan content was significantly positively and negatively correlated with grain β-glucan content and malt β-glucanase activity, respectively, and malt β-glucanase activity was significantly positively correlated with grain β-glucanase activity.展开更多
Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinat...Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinations is more significant than a specific food component.This study investigated the lipid-lowering effect of highland barley polyphenols via lipase assay in vitro and HepG2 cells induced by oleic acid(OA).Five indexes,triglyceride(TG),total cholesterol(T-CHO),low density lipoprotein-cholesterol(LDL-C),aspartate aminotransferase(AST),and alanine aminotransferase(ALT),were used to evaluate the lipidlowering effect of highland barley extract.We also preliminary studied the lipid-lowering mechanism by Realtime fluorescent quantitative polymerase chain reaction(q PCR).The results indicated that highland barley extract contains many components with lipid-lowering effects,such as hyperoside and scoparone.In vitro,the lipase assay showed an 18.4%lipase inhibition rate when the additive contents of highland barley extract were 100μg/m L.The intracellular lipid-lowering effect of highland barley extract was examined using 0.25 mmol/L OA-induced HepG2 cells.The results showed that intracellular TG,LDL-C,and T-CHO content decreased by 34.4%,51.2%,and 18.4%,respectively.ALT and AST decreased by 51.6%and 20.7%compared with the untreated hyperlipidemic HepG2 cells.q PCR results showed that highland barley polyphenols could up-regulation the expression of lipid metabolism-related genes such as PPARγand Fabp4.展开更多
β-glucan is a polysaccharide compound closely related to the quality of barley used as malting, feed and food. Low β-glucan content is expected for brewing and feed barley, while high β-glucan content is desirable ...β-glucan is a polysaccharide compound closely related to the quality of barley used as malting, feed and food. Low β-glucan content is expected for brewing and feed barley, while high β-glucan content is desirable for food barley. The β-glucan content of barley genotypes collected from various areas of China as well as from Canada and Australia were assayed. Meanwhile a multi-locations trial was conducted to determine β-glucan content of 10 barley cultivars in 8 locations for two successive planting years. The results showed that barley genotypes from Tibet and Xinjiang had higher p-glucan content and the genotypes with higher than 8% of P-glucan content were detected in Tibet barleys, being valuable for use in the development of healthy food. Barley cultivars being planted now in winter-sowing areas of China had basically the same β-glucan content as those from Canada and Australia. Barley seeds produced in Hangzhou had lower β-glucan content than seeds from the original areas. There was a highly significant difference in β-glucan content among 10 barleys, 8 locations and between years. On an average of two years, Xiumei 3 and Kongpei 1 had the highest and lowest β-glucan content, respectively, and Taian and Hangzhou produced the highest and lowest P-glucan content barley seeds, respectively. Analysis of AMMI model showed that interaction effect between cultivar and environment was highly significant in both experimental years, and was dependent on cultivar, suggesting that it is important to plant the suitable cultivars in a particular area in order to obtain barley seeds with reasonable β-glucan content.展开更多
Highland barley(HB)is a high-altitude cereal with rich nutritional components and potential health benefits.To clarify its hypoglycemic effect and mechanism,we investigated the effect of whole grain HB and fecal micro...Highland barley(HB)is a high-altitude cereal with rich nutritional components and potential health benefits.To clarify its hypoglycemic effect and mechanism,we investigated the effect of whole grain HB and fecal microbiota transplantation(FMT)on glucose metabolism and gut microbiota in high-fat diet and streptozotocin(HFD/STZ)-induced diabetic mice.The results showed that HB(40%)significantly decreased fasting blood glucose and the area under the glucose tolerance curve,significantly increased insulin secretion and improved insulin resistance in HFD/STZ-induced diabetic mice(P<0.05).Inflammatory factors and blood lipid indices were also significantly alleviated after 12 weeks of 40%HB intervention(P<0.05).Additionally,beneficial bacteria,such as Bifidobacterium and Akkermansia,were significantly enriched in the gut of diabetic mice after whole grain HB intervention.Meanwhile,the results of further FMT experiments verified that the fecal microbiota after the 40%HB intervention not only significantly increased the relative abundance of Bifidobacterium and Akkermansia but also effectively improved glucose metabolism and alleviated the inflammatory state in HFD/STZ-induced diabetic mice.Collectively,our study confirmed the bridge role of gut microbiota in improving glucose metabolism of whole grain HB,which could promote the development of precision nutrition.展开更多
This review updates the present status of the field of molecular markers and marker-assisted selection(MAS),using the example of drought tolerance in barley.The accuracy of selected quantitative trait loci(QTLs),candi...This review updates the present status of the field of molecular markers and marker-assisted selection(MAS),using the example of drought tolerance in barley.The accuracy of selected quantitative trait loci(QTLs),candidate genes and suggested markers was assessed in the barley genome cv.Morex.Six common strategies are described for molecular marker development,candidate gene identification and verification,and their possible applications in MAS to improve the grain yield and yield components in barley under drought stress.These strategies are based on the following five principles:(1)Molecular markers are designated as genomic‘tags’,and their‘prediction’is strongly dependent on their distance from a candidate gene on genetic or physical maps;(2)plants react differently under favourable and stressful conditions or depending on their stage of development;(3)each candidate gene must be verified by confirming its expression in the relevant conditions,e.g.,drought;(4)the molecular marker identified must be validated for MAS for tolerance to drought stress and improved grain yield;and(5)the small number of molecular markers realized for MAS in breeding,from among the many studies targeting candidate genes,can be explained by the complex nature of drought stress,and multiple stress-responsive genes in each barley genotype that are expressed differentially depending on many other factors.展开更多
Methionine restriction(MR)is an effective dietary strategy to regulate energy metabolism and alleviate oxidative stress and inflammation in the body,especially in the middle-aged and elderly population.However,the hig...Methionine restriction(MR)is an effective dietary strategy to regulate energy metabolism and alleviate oxidative stress and inflammation in the body,especially in the middle-aged and elderly population.However,the high methionine content of meat products makes this dietary strategy impossible to combine with protein supplementation and MR.Highland barley(HB),a low-methionine cereal,not only provides the body with protein but also has improved glucose metabolism and antioxidant and anti-inflammatory properties.Therefore,this study evaluated the feasibility of HB as a source of methionine-restricted dietary protein and the potential mechanisms.Middle-aged C57BL/6J mice were fed a control diet(CON),a high-fat diet(HFD),a whole-grain HB high-fat diet(HBHF),or a HBHF+methionine diet(HBHFmet)for 25 weeks.The results showed that the HBHF could keep the body weight,fasting glucose,insulin,homeostasis model assessment of insulin resistance(HOMA-IR),blood lipids,inflammation,and oxidative stress of HFD mice at normal levels.Compared with the HFD groups,HBHF inhibited pancreatic cell apoptosis and improved insulin secretion while improving hepatic and skeletal muscle glucose metabolism.However,these efficacies were attenuated in HBHFmet group mice.These findings suggest that HBHF has an MR strategy.展开更多
Objective: To investigate the effects of different concentrations of β-glucan on the repair of damaged vaginal mucosa, the expression of vascular endothelial growth factor (VEGF), and the inflammatory factor-6 (IL-6)...Objective: To investigate the effects of different concentrations of β-glucan on the repair of damaged vaginal mucosa, the expression of vascular endothelial growth factor (VEGF), and the inflammatory factor-6 (IL-6) in vaginal tissues. Methods: Thirty-six adult female specific pathogen free (SPF)-grade Wistar rats were randomly divided into 3 phase groups with 12 rats each. Vaginal inflammation rat models were established by injecting phenol gel into the vagina of each rat at a dose of 0.1 ml/100g body weight. After modeling, rats were divided into 4 groups based on different concentrations of the test agent. The control group was injected with 0.5 ml of saline, experimental group A was injected with 0.375 ml saline 0.125 ml β-glucan, experimental group B was injected with 0.25 ml saline 0.25 ml β-glucan, and experimental group C was injected with 0.50 ml β-glucan. The injection sites were selected at the 3 o’clock and 9 o’clock positions of the vagina. Rats were sacrificed at 7-, 14-, and 28-days post-injection, and tissue samples were collected from the injection sites and prepared for histological analysis. New blood vessels and fibroblast numbers in the tissues were observed after Hematoxylin-eosin (HE) staining. The expression levels of VEGF and IL-6 in the tissues were measured using quantificational reverse transcription polymerase chain reaction (qRT-PCR). Results: Histological examination of vaginal tissue specimens at 7-, 14-, and 28-days post-injection showed that on day 7, there were no significant changes in the experimental groups compared to the control group. However, on days 14 and 28, the experimental groups showed more new blood vessels, macrophages, and fibroblasts with increased activity compared to the control group. The expression levels of VEGF in vaginal tissues were elevated on days 14 and 28 in the experimental groups. The comparison of IL-6 levels in vaginal tissues on day 28 showed that serum IL-6 levels returned to normal, and there was no statistically significant difference between the experimental and control groups. Conclusion: In the 3 experimental phases, the increase in VEGF levels in vaginal tissues on day 14 post-injection was more pronounced with higher concentrations of β-glucan, and IL-6 levels returned to normal on day 28. β-Glucan can enhance VEGF levels in damaged vaginal tissues, promote the repair of damaged vaginal tissues, and higher concentrations of β-glucan have a better effect.展开更多
Chronic diseases are the leading global causes of death in China and the world, especially hypertension 'and diabetes, and the main reasons are heredity, abnormal metabolism and an unhealthy lifestyle for dietary. Ba...Chronic diseases are the leading global causes of death in China and the world, especially hypertension 'and diabetes, and the main reasons are heredity, abnormal metabolism and an unhealthy lifestyle for dietary. Barley is taditional medicine in China. There is an very important effect for functional foods for preventing chronic diseases of barley grains and barley grass powder as well as its products because of its high contents of minerals, vitamins, amino acids, antioxidant enzymes, chlorophyll and bioactive compounds such as β-glucans, phenolic compounds, GABA, alkaloid, tocopherols and tocotrienols, dietary fiber and so on. There are a lot of challenges to promote health for functional food with barley grains and its grass in China. Barley grain will produce pearled barley, grits, flakes and flour, and it adds texture, flavor, aroma, nutritional and medicinal value to product. Barley grass powder can be produced in barley green, barley grass rice noodle, barley grass ersi, barley grass noodles and barley green beer and other new functional foods. The future for barley use in food products is improving and very promising.展开更多
When the 7_d old barley ( Hordeum vulgare L.) seedlings were treated with different concentrations of NaCl for 3 d, the levels of the noncovalently conjugated polyamines (PAs) in the plasma membrane and tonoplast v...When the 7_d old barley ( Hordeum vulgare L.) seedlings were treated with different concentrations of NaCl for 3 d, the levels of the noncovalently conjugated polyamines (PAs) in the plasma membrane and tonoplast vesicles and the covalently conjugated PAs in the membrane proteins were promoted by NaCl of low concentrations and suppressed by NaCl of high concentrations. Among the noncovalently conjugated PAs in the vesicles, spermidine (Spd) level was the most abundant, while putrescine (Put) content was predominant among the covalently conjugated PAs, accounted for 40%-70%, 35%-60%, respectively. In addition, the TLC (thin_layer chromatography) profiles of the benzoylated PAs presented an unknown polyamine with Rf =0.92 (X 0.92 ), which conjugated covalently and noncovalently in root tonoplast and its content changed as well as Spd with NaCl treatment. The total PA contents in the roots were higher than that in the leaves, and the types and contents of covalently and noncovalently conjugated PAs in the tonoplast were higher than those in the plasma membrane. The results showed that the above two PAs associated with the membrane might be essential in salt adaption of cells and the maintenance of membrane function.展开更多
C-14-glutamate and C-14-arginine were spreaded on leaves of six-day old barley (Hordeum vulgare L.) seedlings that were treated with NaCl 200 mmol/L. The result showed that the pathway of arginine-->ornithine-->...C-14-glutamate and C-14-arginine were spreaded on leaves of six-day old barley (Hordeum vulgare L.) seedlings that were treated with NaCl 200 mmol/L. The result showed that the pathway of arginine-->ornithine-->proline existed in the six-day old barley seedlings and was provoked remarkably by NaCl treatment. After seven days, proline accumulation contributed via the arginine-->ornithine-->proline pathway was 1.0 - 1.5 folds of that via the glutamate-->proline pathway. The activation of arginine-->ornithine-->proline pathway by salt stress in the salt-tolerant cultivar 'Jian 4' was 1.7 - 2.0 folds of that in the salt-sensitive cultivar 'KP 7', which suggested that the activation of arginine-->ornithine-->proline pathway in barley seedlings played an important role in improving salt tolerance of plants.展开更多
Plant growth rate (GR), contents of free polyamines (fPAs) and bound polyamines (bPAs) and activities of some key enzymes involved in polyamine (PA) metabolism in the roots of two barley (Hordeum valgare L.) cultivars...Plant growth rate (GR), contents of free polyamines (fPAs) and bound polyamines (bPAs) and activities of some key enzymes involved in polyamine (PA) metabolism in the roots of two barley (Hordeum valgare L.) cultivars differing in salt sensitivity were investigated with 0-300 mmol/L NaCl treatments. With 0-200 mmol/L NaCl treatments, activities of arginine decarboxylase (ADC) and transglutaminase (TGase) and PA oxidase (PAO) in the roots of barley seedlings all increased, while TGase and PAO activities decreased slightly at 300 mmol/L NaCl. As a result, free Put (fPut) content increased continuously with increasing concentrations of NaCl, while levels of free Spd (fSpd) and an unknown PA (fPAx) and bPAs (bPut, bSpd and bPAx), as well as (fSpd + fPAx)/fPut ratio rose at 50-200 mmol/L NaCl and reduced at 300 mmol/L NaCl. However, no significant change in the tetra-amine spermine (Spin) content was observed. Statistical analysis showed that GR was very significantly positively correlated with (fSpd + fPAx)/fPut ratios and the contents of bPAs, whereas a significant inverse correlation existed between GR and the ratios of fPA contents to bPA levels. These results showed that, under salt stress, the balance between fSpd, fPAx and fPut levels and an equipoise between fPA and bPA contents in roots were important to salt tolerance of barley seedlings.展开更多
The seeds of barley Hordeum vulgare L. cv. Jian 4) were soaked with 0.1 mmol/L putrescine (Put) and 0.5 mmol/L spermidine (Spd), and then the seedlings were treated with 200 mmol/L NaCl. The growth rate (GR), dry matt...The seeds of barley Hordeum vulgare L. cv. Jian 4) were soaked with 0.1 mmol/L putrescine (Put) and 0.5 mmol/L spermidine (Spd), and then the seedlings were treated with 200 mmol/L NaCl. The growth rate (GR), dry matter accumulation, distribution of ions, the amount of polyamines (PAs) bound to tonoplast proteins as well as lipid composition and the activity of tonoplast vesicles isolated from roots were investigated. The results showed that soaking with Put or Spd could retard salt injury, promote GR and dry matter accumulation, and increase K+/Na+ in the roots. Compared with NaCl_treated plants, phospholipid content in root tonoplast rose by soaking with Put and Spd, while the level of galactose in lipids was decreased. Moreover, the ratio in noncovalently conjugated PA contents of (Spd+PAx (an unknown PA)) to (Put+Dap (diaminopropane)), and the total contents of covalently and noncovalently conjugated PAs were all increased. Statistical analysis indicated that the ratio of (Spd+PAx) to (Put+Dap) was significantly and positively correlated with the activities of membrane associated enzymes H+_ATPase and H+_PPase.展开更多
H +_ATPase activity of tonoplast in roots of Hordeum vulgare L. cv. 'Tanyin 2' (salt_tolerant cultivar) increased when the roots were exposed to 50-200 mmol/L NaCl for 2 d, and decreased when NaCl concentrati...H +_ATPase activity of tonoplast in roots of Hordeum vulgare L. cv. 'Tanyin 2' (salt_tolerant cultivar) increased when the roots were exposed to 50-200 mmol/L NaCl for 2 d, and decreased when NaCl concentration was increased to 600 mmol/L. In 'Kepin 7' (salt_sensitive cultivar), tonoplast H +_ATPase activity in roots also increased at lower levels of NaCl (50-100 mmol/L), but decreased at higher levels of NaCl (200-600 mmol/L). Tonoplast fluidity in roots of 'Tanyin 2' decreased at 50-200 mmol/L NaCl, and increased significantly at 600 mmol/L NaCl. Under salt stress, the change of tonoplast fluidity was identical with that of the ratio of unsaturated fatty acids to saturated fatty acids in tonoplast lipid of barley roots. It is proposed that the increase of tonoplast fluidity due to increased degree of unsaturation of fatty acids is one of the reasons leading to the decrease of H +_ATPase activity under higher level of NaCl stress.展开更多
The genetic constitution of fifteen materials derived from the cross wheat (Triticum aestivum L. cv. 'Chinese Spring') X barley (Hordeum vulgare L. cv. 'Betzes') was analyzed, and six disomic alien sub...The genetic constitution of fifteen materials derived from the cross wheat (Triticum aestivum L. cv. 'Chinese Spring') X barley (Hordeum vulgare L. cv. 'Betzes') was analyzed, and six disomic alien substitution lines were screened by GISH. The chromosome configurations in pollen mother cells at meiotic metaphase I (PMCs M I) of F, from each disomic substitution line respectively crossed with double ditelocentric lines 2A, 2B and 2D of 'Chinese Spring' were observed, and a set of wheat-barley disomic alien substitution lines 2H(A), 2H(B) and 2H(D) were obtained. The RFLP analysis with the probe psr131 on the short arm of wheat homeologous group 2 combining with four restriction enzymes were carried out. The results indicated that the probe psr131 could be used as molecular marker to tag the barley chromosome 2H. The barley chromosome 2H had good genetic compensation ability for wheat chromosomes 2B and 2D in vitality and other agronomic characters. The result of testing seed was that the wheat appearance starch quality had been changed from the half-farinaceous of 'Chinese Spring' to the half-cutin of substitution lines by transferring the barley chromosome 2H to wheat.展开更多
[Objective] The study was to analyze functional components in improved barley grains. [Method] Genetic variations of functional components in grains among 629 barley improved lines from four continents were determined...[Objective] The study was to analyze functional components in improved barley grains. [Method] Genetic variations of functional components in grains among 629 barley improved lines from four continents were determined with DU640-type ultraviolet spectrophotometry (BECKMAN). [Result] The contents (mg/100 g) of total flavones and GABA in grains of Asian barley lines (123.09±29.56, 9.49±4.34) were significantly higher than that of American barley lines (103.85±22.33, 7.38±3.59), while no significant difference was observed between Asia/Americas and Europe (115.47±11.41, 9.66±3.98) and Australia (104.20±4.76, 8.83±3.41); furthermore, there was no significant difference of resistant starch content (%) in barley grains among four continents [Asia (1.63±1.44), America (1.54±1.13), Europe (1.20±0.85) and Australia (0.27±0.26)]. The contents (%) of resistant starch in grains of two-rowed barley (ssp. Hordeum distichon Koern., 1.45±1.20) was significantly lower than that of poly-rowed barley (ssp. Hordeum vulgare Orlov., 1.95±1.24). On the contrary, the content of total flavones in two-rowed lines (111.43±27.79 mg/100 g) was significantly higher than that of poly-rowed lines (102.15±14.95 mg/100 g), and the content of GABA in two-rowed lines (8.55±3.73 mg/100 g) was also significantly higher than that of poly-rowed lines (5.96±3.95 mg/100 g). There was the most significant correlation between GABA content and resistant starch (-0.21**)/total flavones content (0.12**, P<0.01, n=629). There were great genotype differences among the functional components in barley grains. The coefficient of variation (78.60%) and range (0-9.29%) of resistant starch (1.56±1.22%) were relatively large, including 11 high-resistant starch lines above 5%; the coefficient of variation (49.00%) and range (0-30.67 mg/100g) of GABA (8.00±3.92 mg/100 g) were also relatively large, including 26 lines with GABA higher than 15 mg/100 g; the coefficient of variation (23.63%) and range (58.44-236.91 mg/100 g) of total flavones (109.44±25.85 mg/100 g) was relatively small, including 14 lines with total flavones higher than 176 mg/100 g. [Conclusion] There are zonal and genotypic differences in the contents of of functional components in barley grains.展开更多
[Objective] This study aimed to investigate differences in phosphorus effi-ciency between two-rowed barley and multiple-rowed barley and differences in phos-phorus efficiency among various agronomic traits, and to exp...[Objective] This study aimed to investigate differences in phosphorus effi-ciency between two-rowed barley and multiple-rowed barley and differences in phos-phorus efficiency among various agronomic traits, and to explore the relationship be-tween agronomic traits and row type with phosphorus efficiency. [Method] Under available phosphorus mass fractions of 1.32 and 36.6 mg/kg, 172 barley varieties, including 79 two-rowed foreign barley, 22 multiple-rowed foreign barley, 58 two-rowed Chinese barley and 13 multiple-rowed Chinese barley, were selected to com-pare differences in phosphorus efficiency-related agronomic traits. Plant height, spike length, number of unfil ed grains, number of unfil ed grains, main panicle weight, to-tal panicle weight, total stem weight, weight of aerial part and heading stage were surveyed for statistical analysis. [Result] The results showed that, various agronomic traits were larger under fertilization condition than under non-fertilization condition ex-cept number of unfil ed grains and heading stage. Plant high, spike length, weight of aerial part and heading stage varied greatly under non-fertilization condition; number of fil ed grains, number of unfil ed grains and total stem weight varied greatly under fertilization condition. In two-rowed barley, plant height and number of fil ed grains of Chinese varieties were higher than those of foreign varieties, while other agronomic traits such as spike length, number of unfil ed grains, main panicle weight, total panicle weight, total stem weight, weight of aerial part and heading stage of foreign varieties were higher than those of Chinese varieties. Spike length and weight of aerial part in multiple-rowed and two-rowed foreign barley were higher than those in Chinese barley. In multiple-rowed barley, plant height, number of unfil ed grains, total panicle weight and total stem weight of foreign varieties were higher under non-fer-tilization condition and lower under fertilization condition compared with those of Chi-nese varieties; number of fil ed grains, main panicle weight and heading stage of foreign varieties were lower under non-fertilization condition and higher under fertil-ization condition compared with those of Chinese varieties. [Conclusion] Heading stage, number of fil ed grains, number of unfil ed grains and total stem weight are more sensitive to phosphorus efficiency. Multiple-rowed barley is more sensitive to phosphorus efficiency than two-rowed barley.展开更多
[Objective] This study aimed to analyze the interaction between genotype of flavonoids of barley grain and environment, to increase the flavonoid content of barley grain in cultivation and breeding. [Method] In this s...[Objective] This study aimed to analyze the interaction between genotype of flavonoids of barley grain and environment, to increase the flavonoid content of barley grain in cultivation and breeding. [Method] In this study, the content of cate- chin, myricetin, quercetin and kaempferol of barley grain planted in Kunming, Qujing and Baoshan were determined by HPLC, and the genotype, environment, genotype- environment interaction of the flavonoid content of barley grain were analyzed. [Result] According to the experimental results, the genotype variance, environmental variance and G x E interaction variance of catechin and kaempferol contents show the same trend: genotype variation 〉 environmental variation 〉 G × E interaction variation, which all reach a extremely significant level; the genotype variance, envi- ronmental variance and G × E interaction variance of quercetin and total flavonoid contents show the same trend: genetype variation 〉 G × E interaction variation 〉 environmental variation, which all reach a extremely significant level; the genotype variance and environmental variance of myricetin content both reach a extremely sig- nificant level, while the G × E interaction variance reaches a significant level, showing an order of genotype variation 〉 environmental variation 〉 G × E interaction variation; the genotype variance, environmental variance and G x E interaction vari- ance of total flavonoid content show an order of genotype variation 〉 environmental variation 〉 G × E interaction variation. Among different barley varieties, Ziguang- mangluoerling and Kuanyingdamai in Qujing, Kunming and Baoshan have relatively high content of quercetin, while other barley varieties barely contain any quercetin. The grains of Ziguangmangluoerling and Kuanyingdamai are purple, while the grains of other barley varieties are yellow. [Conclusion] Four main flavonoids and the total flavonoids of barley grain are mainly under genetic control and affected by genetic- environment interactions; the purple barley grains contain high content of quercetin.展开更多
文摘Lack of dietary fiber contributes to many health issues, particularly chronic vascular diseases. Mixed linkage β-1.3 - 1.4 beta-glucan (beta-glucan, in this paper) is a confirmed beneficial ingredient for the human diet through reduction of cholesterol and the glycemic index. Barley contains the highest beta-glucan content of all the grains, and in this study, a percentage of flour from two high beta glucan lines was, each, added to an array of wheat-based food products to measure how it impacted total dietary fiber. Results showed that beta-glucan content was higher in all the products containing the added high beta-glucan flour, along with increased total dietary fiber content. Protein content in the food products is also increased with the higher protein in the barley flours added. Beta-glucan content in the barley-added products increased to 1.2% - 4.0% versus 0.2% - 0.5% in the pure wheat products, while the dietary fibers increased to 3.5% - 24.4% versus 2.1% - 9.1% in pure wheat product controls. This research provided experimental evidence that using a high beta-glucan barley ingredient in food can increase dietary fiber to benefit health.
基金This work was supported by the Shanghai Agriculture Applied Technology Development Program,China(Grant No.G2017-02-08-00-08-F00074)the Key Technology R&D Project of Shanghai Agriculture-developed with Science&Technology Program,China(Grant No.2018(1-2))the earmarked fund for China Agriculture Research System(CARS-05-01A-02).
文摘Barley grain is a valuable source ofβ-glucan,which is an important component of dietary fiber with significant human health benefits.Although the genetic basis ofβ-glucan biosynthesis has been widely studied,a genome-wide association study(GWAS)is still required for a scan of the candidate genes related to the complex quantitative trait based on the high-quality barley reference genome.In this study,a GWAS was conducted using a population composed of 87 barley landraces(39 hulled and 48 hulless,β-glucan from 2.07%to 6.56%)with 191,098 nucleotide polymorphisms(SNPs)markers to cover the chromosomes with the highest density.The population was divided into four sub-populations(POP1~POP4),and theβ-glucan content in POP2 was significantly higher than that in other groups,in which most of the hulless barley landraces are from Qinghai-Tibet Plateau in China.Among seven SNP markers identified by GWAS,two(SNP2 and SNP3)of them showed positive correlation toβ-glucan trait and the remaining five(SNP1,SNP4,SNP5,SNP6 and SNP7)showed the negative relationship.Two candidate genes linked to SNP7,HORVU7Hr1G000320 and HORVU7Hr1G000040,belong to the nucleotide triphosphate hydrolase super-family which is probable to affect the activities ofβ-glucan synthase.Another candidate gene associated with SNP1,HORVU1Hr1G000010,is possibly involved in sugar response.In conclusion,our results provide new insights into the genetic basis ofβ-glucan accumulation in barley grains,and the discovery of new SNP markers distributed in each chromosome and the associated candidate genes will be valuable for the breeding of functional barley varieties with high β-glucan.
基金the National Natural Science Foundation of China(39870506) Zhejiang Natural Science Foundation(397259).
文摘The influences of N application rate, timing, sowing date and seeding rate on β-glucan and protein content in barley grains were studied through the field experiments in Hangzhou, China during 1997 -2001. Protein content increased with N application rate and with N proportion applied at late stage. β-glucan content also responded significantly to N application rate and timing, but with different pattern with protein content. Of three N rate treatments, the medium N rate (135 kg ha-1) had the highest β-glucan content, being significantly higher than low N rate (90 kg ha-1) and no difference with high N rate (180 kg ha-1). A-mong three N timing treatments, two times of N top-dressing at both tillering and booting stage had significantly higher β-glucan content than once N top-dressing at tillering or booting stage. Sowing date has the dramatic effect on both β-glucan and protein content. Protein content decreased with the delayed sowing, and kernel weight showed opposite tendency. Either earlier or later sowing caused increased β-glucan content relative to sowing in early November, which is the normal date for barley sowing locally. Seeding rate had no significant influence on both β-glucan and protein content.
文摘Eight two-rowed barley cultivars were grown at seven locations in the southern winter-barley zone of China. Mean grainβ-glucanase activity ranged from 39.89 U kg-1 for Suyin2 to 49.75 U kg-1 for Xi-umai3 in 8 cultivars grown at 7 locations, and from 38. 74 U kg-1 in Zhengzhou to 57. 96 U kg-1 in Putian among 7 locations on an average of all cultivars. Correspondingly, mean malt β-glucanase activity of 8 cultivars ranged from 313.33 U kg-1 for ZAU3 to 489. 89 U kg-1 for Daner Barley, and of 7 locations from 330.40 U kg-1 in Yancheng to 418. 24 U kg-1 in Putian. There were significant differences among cultivars and locations in maltβ-glucanase activities. The locations showed much larger variation in maltβ-glucanase activities than cultivars. The reduction of total β-glucan content after malting varied in both cultivars and locations, with a mean of 78.31%. The analysis of correlations showed that maltβ-glucan content was significantly positively and negatively correlated with grain β-glucan content and malt β-glucanase activity, respectively, and malt β-glucanase activity was significantly positively correlated with grain β-glucanase activity.
基金financially supported by the National Key Research and Development Program of China(2021YFD2100904)the National Natural Science Foundation of China(31871729,32172147)+2 种基金the Modern Agriculture key Project of Jiangsu Province of China(BE2022317)the Modern Agricultural Industrial Technology System Construction Project of Jiangsu Province of China(JATS[2021]522)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinations is more significant than a specific food component.This study investigated the lipid-lowering effect of highland barley polyphenols via lipase assay in vitro and HepG2 cells induced by oleic acid(OA).Five indexes,triglyceride(TG),total cholesterol(T-CHO),low density lipoprotein-cholesterol(LDL-C),aspartate aminotransferase(AST),and alanine aminotransferase(ALT),were used to evaluate the lipidlowering effect of highland barley extract.We also preliminary studied the lipid-lowering mechanism by Realtime fluorescent quantitative polymerase chain reaction(q PCR).The results indicated that highland barley extract contains many components with lipid-lowering effects,such as hyperoside and scoparone.In vitro,the lipase assay showed an 18.4%lipase inhibition rate when the additive contents of highland barley extract were 100μg/m L.The intracellular lipid-lowering effect of highland barley extract was examined using 0.25 mmol/L OA-induced HepG2 cells.The results showed that intracellular TG,LDL-C,and T-CHO content decreased by 34.4%,51.2%,and 18.4%,respectively.ALT and AST decreased by 51.6%and 20.7%compared with the untreated hyperlipidemic HepG2 cells.q PCR results showed that highland barley polyphenols could up-regulation the expression of lipid metabolism-related genes such as PPARγand Fabp4.
基金This project was supported by the National Natural Science Foundation of China(No.39870506)Zhejiang Natural Science Foundation(No.397259).
文摘β-glucan is a polysaccharide compound closely related to the quality of barley used as malting, feed and food. Low β-glucan content is expected for brewing and feed barley, while high β-glucan content is desirable for food barley. The β-glucan content of barley genotypes collected from various areas of China as well as from Canada and Australia were assayed. Meanwhile a multi-locations trial was conducted to determine β-glucan content of 10 barley cultivars in 8 locations for two successive planting years. The results showed that barley genotypes from Tibet and Xinjiang had higher p-glucan content and the genotypes with higher than 8% of P-glucan content were detected in Tibet barleys, being valuable for use in the development of healthy food. Barley cultivars being planted now in winter-sowing areas of China had basically the same β-glucan content as those from Canada and Australia. Barley seeds produced in Hangzhou had lower β-glucan content than seeds from the original areas. There was a highly significant difference in β-glucan content among 10 barleys, 8 locations and between years. On an average of two years, Xiumei 3 and Kongpei 1 had the highest and lowest β-glucan content, respectively, and Taian and Hangzhou produced the highest and lowest P-glucan content barley seeds, respectively. Analysis of AMMI model showed that interaction effect between cultivar and environment was highly significant in both experimental years, and was dependent on cultivar, suggesting that it is important to plant the suitable cultivars in a particular area in order to obtain barley seeds with reasonable β-glucan content.
基金funded by the National Natural Science Foundation of China(32101876)the Discipline ConstructionFood Science and Engineering(SPKX-202202)grants。
文摘Highland barley(HB)is a high-altitude cereal with rich nutritional components and potential health benefits.To clarify its hypoglycemic effect and mechanism,we investigated the effect of whole grain HB and fecal microbiota transplantation(FMT)on glucose metabolism and gut microbiota in high-fat diet and streptozotocin(HFD/STZ)-induced diabetic mice.The results showed that HB(40%)significantly decreased fasting blood glucose and the area under the glucose tolerance curve,significantly increased insulin secretion and improved insulin resistance in HFD/STZ-induced diabetic mice(P<0.05).Inflammatory factors and blood lipid indices were also significantly alleviated after 12 weeks of 40%HB intervention(P<0.05).Additionally,beneficial bacteria,such as Bifidobacterium and Akkermansia,were significantly enriched in the gut of diabetic mice after whole grain HB intervention.Meanwhile,the results of further FMT experiments verified that the fecal microbiota after the 40%HB intervention not only significantly increased the relative abundance of Bifidobacterium and Akkermansia but also effectively improved glucose metabolism and alleviated the inflammatory state in HFD/STZ-induced diabetic mice.Collectively,our study confirmed the bridge role of gut microbiota in improving glucose metabolism of whole grain HB,which could promote the development of precision nutrition.
基金supported by Bolashak International Fellowships,Center for International Programs,Ministry of Education and Science,KazakhstanAP14869777 supported by the Ministry of Education and Science,KazakhstanResearch Projects BR10764991 and BR10765000 supported by the Ministry of Agriculture,Kazakhstan。
文摘This review updates the present status of the field of molecular markers and marker-assisted selection(MAS),using the example of drought tolerance in barley.The accuracy of selected quantitative trait loci(QTLs),candidate genes and suggested markers was assessed in the barley genome cv.Morex.Six common strategies are described for molecular marker development,candidate gene identification and verification,and their possible applications in MAS to improve the grain yield and yield components in barley under drought stress.These strategies are based on the following five principles:(1)Molecular markers are designated as genomic‘tags’,and their‘prediction’is strongly dependent on their distance from a candidate gene on genetic or physical maps;(2)plants react differently under favourable and stressful conditions or depending on their stage of development;(3)each candidate gene must be verified by confirming its expression in the relevant conditions,e.g.,drought;(4)the molecular marker identified must be validated for MAS for tolerance to drought stress and improved grain yield;and(5)the small number of molecular markers realized for MAS in breeding,from among the many studies targeting candidate genes,can be explained by the complex nature of drought stress,and multiple stress-responsive genes in each barley genotype that are expressed differentially depending on many other factors.
基金supported by the 12th Five-Year Plan for Science and Technology Development of China(2012BAD33B05).
文摘Methionine restriction(MR)is an effective dietary strategy to regulate energy metabolism and alleviate oxidative stress and inflammation in the body,especially in the middle-aged and elderly population.However,the high methionine content of meat products makes this dietary strategy impossible to combine with protein supplementation and MR.Highland barley(HB),a low-methionine cereal,not only provides the body with protein but also has improved glucose metabolism and antioxidant and anti-inflammatory properties.Therefore,this study evaluated the feasibility of HB as a source of methionine-restricted dietary protein and the potential mechanisms.Middle-aged C57BL/6J mice were fed a control diet(CON),a high-fat diet(HFD),a whole-grain HB high-fat diet(HBHF),or a HBHF+methionine diet(HBHFmet)for 25 weeks.The results showed that the HBHF could keep the body weight,fasting glucose,insulin,homeostasis model assessment of insulin resistance(HOMA-IR),blood lipids,inflammation,and oxidative stress of HFD mice at normal levels.Compared with the HFD groups,HBHF inhibited pancreatic cell apoptosis and improved insulin secretion while improving hepatic and skeletal muscle glucose metabolism.However,these efficacies were attenuated in HBHFmet group mice.These findings suggest that HBHF has an MR strategy.
文摘Objective: To investigate the effects of different concentrations of β-glucan on the repair of damaged vaginal mucosa, the expression of vascular endothelial growth factor (VEGF), and the inflammatory factor-6 (IL-6) in vaginal tissues. Methods: Thirty-six adult female specific pathogen free (SPF)-grade Wistar rats were randomly divided into 3 phase groups with 12 rats each. Vaginal inflammation rat models were established by injecting phenol gel into the vagina of each rat at a dose of 0.1 ml/100g body weight. After modeling, rats were divided into 4 groups based on different concentrations of the test agent. The control group was injected with 0.5 ml of saline, experimental group A was injected with 0.375 ml saline 0.125 ml β-glucan, experimental group B was injected with 0.25 ml saline 0.25 ml β-glucan, and experimental group C was injected with 0.50 ml β-glucan. The injection sites were selected at the 3 o’clock and 9 o’clock positions of the vagina. Rats were sacrificed at 7-, 14-, and 28-days post-injection, and tissue samples were collected from the injection sites and prepared for histological analysis. New blood vessels and fibroblast numbers in the tissues were observed after Hematoxylin-eosin (HE) staining. The expression levels of VEGF and IL-6 in the tissues were measured using quantificational reverse transcription polymerase chain reaction (qRT-PCR). Results: Histological examination of vaginal tissue specimens at 7-, 14-, and 28-days post-injection showed that on day 7, there were no significant changes in the experimental groups compared to the control group. However, on days 14 and 28, the experimental groups showed more new blood vessels, macrophages, and fibroblasts with increased activity compared to the control group. The expression levels of VEGF in vaginal tissues were elevated on days 14 and 28 in the experimental groups. The comparison of IL-6 levels in vaginal tissues on day 28 showed that serum IL-6 levels returned to normal, and there was no statistically significant difference between the experimental and control groups. Conclusion: In the 3 experimental phases, the increase in VEGF levels in vaginal tissues on day 14 post-injection was more pronounced with higher concentrations of β-glucan, and IL-6 levels returned to normal on day 28. β-Glucan can enhance VEGF levels in damaged vaginal tissues, promote the repair of damaged vaginal tissues, and higher concentrations of β-glucan have a better effect.
基金Supported by China Agriculture Research System(CARS-05)National Natural Science Foundation of China(31260326)Science and Technology to Benefit the People from Yunnan Provincial Scientific and Technology Department(2014RA060)~~
文摘Chronic diseases are the leading global causes of death in China and the world, especially hypertension 'and diabetes, and the main reasons are heredity, abnormal metabolism and an unhealthy lifestyle for dietary. Barley is taditional medicine in China. There is an very important effect for functional foods for preventing chronic diseases of barley grains and barley grass powder as well as its products because of its high contents of minerals, vitamins, amino acids, antioxidant enzymes, chlorophyll and bioactive compounds such as β-glucans, phenolic compounds, GABA, alkaloid, tocopherols and tocotrienols, dietary fiber and so on. There are a lot of challenges to promote health for functional food with barley grains and its grass in China. Barley grain will produce pearled barley, grits, flakes and flour, and it adds texture, flavor, aroma, nutritional and medicinal value to product. Barley grass powder can be produced in barley green, barley grass rice noodle, barley grass ersi, barley grass noodles and barley green beer and other new functional foods. The future for barley use in food products is improving and very promising.
文摘When the 7_d old barley ( Hordeum vulgare L.) seedlings were treated with different concentrations of NaCl for 3 d, the levels of the noncovalently conjugated polyamines (PAs) in the plasma membrane and tonoplast vesicles and the covalently conjugated PAs in the membrane proteins were promoted by NaCl of low concentrations and suppressed by NaCl of high concentrations. Among the noncovalently conjugated PAs in the vesicles, spermidine (Spd) level was the most abundant, while putrescine (Put) content was predominant among the covalently conjugated PAs, accounted for 40%-70%, 35%-60%, respectively. In addition, the TLC (thin_layer chromatography) profiles of the benzoylated PAs presented an unknown polyamine with Rf =0.92 (X 0.92 ), which conjugated covalently and noncovalently in root tonoplast and its content changed as well as Spd with NaCl treatment. The total PA contents in the roots were higher than that in the leaves, and the types and contents of covalently and noncovalently conjugated PAs in the tonoplast were higher than those in the plasma membrane. The results showed that the above two PAs associated with the membrane might be essential in salt adaption of cells and the maintenance of membrane function.
文摘C-14-glutamate and C-14-arginine were spreaded on leaves of six-day old barley (Hordeum vulgare L.) seedlings that were treated with NaCl 200 mmol/L. The result showed that the pathway of arginine-->ornithine-->proline existed in the six-day old barley seedlings and was provoked remarkably by NaCl treatment. After seven days, proline accumulation contributed via the arginine-->ornithine-->proline pathway was 1.0 - 1.5 folds of that via the glutamate-->proline pathway. The activation of arginine-->ornithine-->proline pathway by salt stress in the salt-tolerant cultivar 'Jian 4' was 1.7 - 2.0 folds of that in the salt-sensitive cultivar 'KP 7', which suggested that the activation of arginine-->ornithine-->proline pathway in barley seedlings played an important role in improving salt tolerance of plants.
文摘Plant growth rate (GR), contents of free polyamines (fPAs) and bound polyamines (bPAs) and activities of some key enzymes involved in polyamine (PA) metabolism in the roots of two barley (Hordeum valgare L.) cultivars differing in salt sensitivity were investigated with 0-300 mmol/L NaCl treatments. With 0-200 mmol/L NaCl treatments, activities of arginine decarboxylase (ADC) and transglutaminase (TGase) and PA oxidase (PAO) in the roots of barley seedlings all increased, while TGase and PAO activities decreased slightly at 300 mmol/L NaCl. As a result, free Put (fPut) content increased continuously with increasing concentrations of NaCl, while levels of free Spd (fSpd) and an unknown PA (fPAx) and bPAs (bPut, bSpd and bPAx), as well as (fSpd + fPAx)/fPut ratio rose at 50-200 mmol/L NaCl and reduced at 300 mmol/L NaCl. However, no significant change in the tetra-amine spermine (Spin) content was observed. Statistical analysis showed that GR was very significantly positively correlated with (fSpd + fPAx)/fPut ratios and the contents of bPAs, whereas a significant inverse correlation existed between GR and the ratios of fPA contents to bPA levels. These results showed that, under salt stress, the balance between fSpd, fPAx and fPut levels and an equipoise between fPA and bPA contents in roots were important to salt tolerance of barley seedlings.
文摘The seeds of barley Hordeum vulgare L. cv. Jian 4) were soaked with 0.1 mmol/L putrescine (Put) and 0.5 mmol/L spermidine (Spd), and then the seedlings were treated with 200 mmol/L NaCl. The growth rate (GR), dry matter accumulation, distribution of ions, the amount of polyamines (PAs) bound to tonoplast proteins as well as lipid composition and the activity of tonoplast vesicles isolated from roots were investigated. The results showed that soaking with Put or Spd could retard salt injury, promote GR and dry matter accumulation, and increase K+/Na+ in the roots. Compared with NaCl_treated plants, phospholipid content in root tonoplast rose by soaking with Put and Spd, while the level of galactose in lipids was decreased. Moreover, the ratio in noncovalently conjugated PA contents of (Spd+PAx (an unknown PA)) to (Put+Dap (diaminopropane)), and the total contents of covalently and noncovalently conjugated PAs were all increased. Statistical analysis indicated that the ratio of (Spd+PAx) to (Put+Dap) was significantly and positively correlated with the activities of membrane associated enzymes H+_ATPase and H+_PPase.
文摘H +_ATPase activity of tonoplast in roots of Hordeum vulgare L. cv. 'Tanyin 2' (salt_tolerant cultivar) increased when the roots were exposed to 50-200 mmol/L NaCl for 2 d, and decreased when NaCl concentration was increased to 600 mmol/L. In 'Kepin 7' (salt_sensitive cultivar), tonoplast H +_ATPase activity in roots also increased at lower levels of NaCl (50-100 mmol/L), but decreased at higher levels of NaCl (200-600 mmol/L). Tonoplast fluidity in roots of 'Tanyin 2' decreased at 50-200 mmol/L NaCl, and increased significantly at 600 mmol/L NaCl. Under salt stress, the change of tonoplast fluidity was identical with that of the ratio of unsaturated fatty acids to saturated fatty acids in tonoplast lipid of barley roots. It is proposed that the increase of tonoplast fluidity due to increased degree of unsaturation of fatty acids is one of the reasons leading to the decrease of H +_ATPase activity under higher level of NaCl stress.
文摘The genetic constitution of fifteen materials derived from the cross wheat (Triticum aestivum L. cv. 'Chinese Spring') X barley (Hordeum vulgare L. cv. 'Betzes') was analyzed, and six disomic alien substitution lines were screened by GISH. The chromosome configurations in pollen mother cells at meiotic metaphase I (PMCs M I) of F, from each disomic substitution line respectively crossed with double ditelocentric lines 2A, 2B and 2D of 'Chinese Spring' were observed, and a set of wheat-barley disomic alien substitution lines 2H(A), 2H(B) and 2H(D) were obtained. The RFLP analysis with the probe psr131 on the short arm of wheat homeologous group 2 combining with four restriction enzymes were carried out. The results indicated that the probe psr131 could be used as molecular marker to tag the barley chromosome 2H. The barley chromosome 2H had good genetic compensation ability for wheat chromosomes 2B and 2D in vitality and other agronomic characters. The result of testing seed was that the wheat appearance starch quality had been changed from the half-farinaceous of 'Chinese Spring' to the half-cutin of substitution lines by transferring the barley chromosome 2H to wheat.
文摘[Objective] The study was to analyze functional components in improved barley grains. [Method] Genetic variations of functional components in grains among 629 barley improved lines from four continents were determined with DU640-type ultraviolet spectrophotometry (BECKMAN). [Result] The contents (mg/100 g) of total flavones and GABA in grains of Asian barley lines (123.09±29.56, 9.49±4.34) were significantly higher than that of American barley lines (103.85±22.33, 7.38±3.59), while no significant difference was observed between Asia/Americas and Europe (115.47±11.41, 9.66±3.98) and Australia (104.20±4.76, 8.83±3.41); furthermore, there was no significant difference of resistant starch content (%) in barley grains among four continents [Asia (1.63±1.44), America (1.54±1.13), Europe (1.20±0.85) and Australia (0.27±0.26)]. The contents (%) of resistant starch in grains of two-rowed barley (ssp. Hordeum distichon Koern., 1.45±1.20) was significantly lower than that of poly-rowed barley (ssp. Hordeum vulgare Orlov., 1.95±1.24). On the contrary, the content of total flavones in two-rowed lines (111.43±27.79 mg/100 g) was significantly higher than that of poly-rowed lines (102.15±14.95 mg/100 g), and the content of GABA in two-rowed lines (8.55±3.73 mg/100 g) was also significantly higher than that of poly-rowed lines (5.96±3.95 mg/100 g). There was the most significant correlation between GABA content and resistant starch (-0.21**)/total flavones content (0.12**, P<0.01, n=629). There were great genotype differences among the functional components in barley grains. The coefficient of variation (78.60%) and range (0-9.29%) of resistant starch (1.56±1.22%) were relatively large, including 11 high-resistant starch lines above 5%; the coefficient of variation (49.00%) and range (0-30.67 mg/100g) of GABA (8.00±3.92 mg/100 g) were also relatively large, including 26 lines with GABA higher than 15 mg/100 g; the coefficient of variation (23.63%) and range (58.44-236.91 mg/100 g) of total flavones (109.44±25.85 mg/100 g) was relatively small, including 14 lines with total flavones higher than 176 mg/100 g. [Conclusion] There are zonal and genotypic differences in the contents of of functional components in barley grains.
基金Supported by China Agriculture Research System(CARS-05)National Natural Science Foundation of China(No.31260326)Personnel Training Plan of Technological Innovation of Yunnan Province(No.2012HB050)~~
文摘[Objective] This study aimed to investigate differences in phosphorus effi-ciency between two-rowed barley and multiple-rowed barley and differences in phos-phorus efficiency among various agronomic traits, and to explore the relationship be-tween agronomic traits and row type with phosphorus efficiency. [Method] Under available phosphorus mass fractions of 1.32 and 36.6 mg/kg, 172 barley varieties, including 79 two-rowed foreign barley, 22 multiple-rowed foreign barley, 58 two-rowed Chinese barley and 13 multiple-rowed Chinese barley, were selected to com-pare differences in phosphorus efficiency-related agronomic traits. Plant height, spike length, number of unfil ed grains, number of unfil ed grains, main panicle weight, to-tal panicle weight, total stem weight, weight of aerial part and heading stage were surveyed for statistical analysis. [Result] The results showed that, various agronomic traits were larger under fertilization condition than under non-fertilization condition ex-cept number of unfil ed grains and heading stage. Plant high, spike length, weight of aerial part and heading stage varied greatly under non-fertilization condition; number of fil ed grains, number of unfil ed grains and total stem weight varied greatly under fertilization condition. In two-rowed barley, plant height and number of fil ed grains of Chinese varieties were higher than those of foreign varieties, while other agronomic traits such as spike length, number of unfil ed grains, main panicle weight, total panicle weight, total stem weight, weight of aerial part and heading stage of foreign varieties were higher than those of Chinese varieties. Spike length and weight of aerial part in multiple-rowed and two-rowed foreign barley were higher than those in Chinese barley. In multiple-rowed barley, plant height, number of unfil ed grains, total panicle weight and total stem weight of foreign varieties were higher under non-fer-tilization condition and lower under fertilization condition compared with those of Chi-nese varieties; number of fil ed grains, main panicle weight and heading stage of foreign varieties were lower under non-fertilization condition and higher under fertil-ization condition compared with those of Chinese varieties. [Conclusion] Heading stage, number of fil ed grains, number of unfil ed grains and total stem weight are more sensitive to phosphorus efficiency. Multiple-rowed barley is more sensitive to phosphorus efficiency than two-rowed barley.
基金Supported by National Barley Industrial Technology System of China(CARS-05)National Natural Science Foundation of China(No.31260326)~~
文摘[Objective] This study aimed to analyze the interaction between genotype of flavonoids of barley grain and environment, to increase the flavonoid content of barley grain in cultivation and breeding. [Method] In this study, the content of cate- chin, myricetin, quercetin and kaempferol of barley grain planted in Kunming, Qujing and Baoshan were determined by HPLC, and the genotype, environment, genotype- environment interaction of the flavonoid content of barley grain were analyzed. [Result] According to the experimental results, the genotype variance, environmental variance and G x E interaction variance of catechin and kaempferol contents show the same trend: genotype variation 〉 environmental variation 〉 G × E interaction variation, which all reach a extremely significant level; the genotype variance, envi- ronmental variance and G × E interaction variance of quercetin and total flavonoid contents show the same trend: genetype variation 〉 G × E interaction variation 〉 environmental variation, which all reach a extremely significant level; the genotype variance and environmental variance of myricetin content both reach a extremely sig- nificant level, while the G × E interaction variance reaches a significant level, showing an order of genotype variation 〉 environmental variation 〉 G × E interaction variation; the genotype variance, environmental variance and G x E interaction vari- ance of total flavonoid content show an order of genotype variation 〉 environmental variation 〉 G × E interaction variation. Among different barley varieties, Ziguang- mangluoerling and Kuanyingdamai in Qujing, Kunming and Baoshan have relatively high content of quercetin, while other barley varieties barely contain any quercetin. The grains of Ziguangmangluoerling and Kuanyingdamai are purple, while the grains of other barley varieties are yellow. [Conclusion] Four main flavonoids and the total flavonoids of barley grain are mainly under genetic control and affected by genetic- environment interactions; the purple barley grains contain high content of quercetin.