Observations indicated that in the region of the Subtropical Countercurrent(STCC) over the Pacific (140°E-170°W, 19°N-28°N), the eddy kinetic energy over the western sideis much higher than that ov...Observations indicated that in the region of the Subtropical Countercurrent(STCC) over the Pacific (140°E-170°W, 19°N-28°N), the eddy kinetic energy over the western sideis much higher than that over the eastern side. The cause of such a behavior was theoreticallyinvestigated in this paper. The calculation of geostrophic current in this region indicates thatthere are relatively strong meridional geostrophic currents in this region even though the zonalcurrent is dominant in most seasons. Using a 2. 5-layer reduced-gravity model, ba-roclinicinstability of non-zonal current was discussed. It is found that at the western side of STCC thevertical shear of the meridional geostrophic current will be in favor of the ba-roclinicinstability, but at its eastern side it will suppress ba-roclinic instability, thus causing thegrowth of eddies over the western side much faster than that over the eastern side.展开更多
文摘Observations indicated that in the region of the Subtropical Countercurrent(STCC) over the Pacific (140°E-170°W, 19°N-28°N), the eddy kinetic energy over the western sideis much higher than that over the eastern side. The cause of such a behavior was theoreticallyinvestigated in this paper. The calculation of geostrophic current in this region indicates thatthere are relatively strong meridional geostrophic currents in this region even though the zonalcurrent is dominant in most seasons. Using a 2. 5-layer reduced-gravity model, ba-roclinicinstability of non-zonal current was discussed. It is found that at the western side of STCC thevertical shear of the meridional geostrophic current will be in favor of the ba-roclinicinstability, but at its eastern side it will suppress ba-roclinic instability, thus causing thegrowth of eddies over the western side much faster than that over the eastern side.