In a barotropic atmosphere, new Reynolds mean momentum equations including turbulent viscosity, dispersion, and instability are used not only to derive the KdV-Burgers-Kuramoto equation but also to analyze the physica...In a barotropic atmosphere, new Reynolds mean momentum equations including turbulent viscosity, dispersion, and instability are used not only to derive the KdV-Burgers-Kuramoto equation but also to analyze the physical mechanism of the cascades of energy and enstrophy. It shows that it is the effects of dispersion and instability that result in the inverse cascade. Then based on the conservation laws of the energy and enstrophy, a cascade model is put forward and the processes of the cascades are described.展开更多
In this paper, we have investigated large scale disturbance in barotropic atmosphere on a sphere. It demonstrates that: considering nonlinear effects of interaction between waves in barotropic vorticity equation, the ...In this paper, we have investigated large scale disturbance in barotropic atmosphere on a sphere. It demonstrates that: considering nonlinear effects of interaction between waves in barotropic vorticity equation, the wave packet of the disturbance is governed by the famous equation-nonlinear Schrodinger equation. For the solitary wave, two factors are very important: one is spherical effect of the disturbance and the other is meridional shear of blocking high. In comparison with the results of local Cartesian coordinates, the former factor is the individuality of spherical soliton.展开更多
In this paper, the nonlinear waves and their barotropic stability in the tropical ocean and atmosphere are studied with the qualitative theory of the ordinary differential equation. The relationship is derived between...In this paper, the nonlinear waves and their barotropic stability in the tropical ocean and atmosphere are studied with the qualitative theory of the ordinary differential equation. The relationship is derived between the stability of nonlinear waves with different frequencies and the basic currents and their horizontal shear in the tropical ocean and atmosphere.展开更多
The scientific achievements of travelling waves in a barotropic atmosphere are introduced, including i) the existence conditions of periodic solutions (wavetrain solutions) and solitary wave solutions (pulse solutions...The scientific achievements of travelling waves in a barotropic atmosphere are introduced, including i) the existence conditions of periodic solutions (wavetrain solutions) and solitary wave solutions (pulse solutions), together with the solution finding methods and a series of related problems, ii) seeking solutions of monotonous wave (wave front) and of nonmonotonous travelling wave (oscillatory wave) by using phase plane shooting technique and hi) progress in the study of travelling wave solution at home and abroad. The investigation of travelling wave solutions in recent years has been found in mathematics, physics, chemistry, biology and other sciences. Over the past decade the problem has been the subject of much interest and become an important area of research. So it is no doubt of great significance to investigate the travelling wave solutions and thereby explain phenomena of weather.展开更多
Introducing the concept of pseudo-momentum, a generalized Arnold-Dikii functional is established, and then the sufficient condition for stability of nonlinear wave motion in the barotropic nondivergent atmosphere is d...Introducing the concept of pseudo-momentum, a generalized Arnold-Dikii functional is established, and then the sufficient condition for stability of nonlinear wave motion in the barotropic nondivergent atmosphere is derived by use of variational principle. It is found that the stability of nonlinear wave motion depends not only on its streamfield distri- bution, but also on its phase speed for the propagating nonlinear wave motion. Moreover, the stability criterion of trav- elling modon is also obtained, and it is shown that the travelling modon is stable if the scale of disturbance superimposed on the travelling modon remains to be less than that of the travelling modon.展开更多
After the manner for studying atmospheric kinetic energy,concepts of atmospheric enstrophy (ζ~2/2)_m and barotropic and baroclinic enstrophy (ζ_m^2/2,ζ_s^2/2) are developed with their relations investigated,whereup...After the manner for studying atmospheric kinetic energy,concepts of atmospheric enstrophy (ζ~2/2)_m and barotropic and baroclinic enstrophy (ζ_m^2/2,ζ_s^2/2) are developed with their relations investigated,whereupon are established,separately,equations for the 1000- 100 hPa extent- averaged ζ_m^2/2 and ζ_s^2/2 over a limited area and on a local basis.Study shows that controlling their changes are the following factors:the terms of their fluxes (viz.,divergences).β effect,their mutual conversions,production and dissipation.Analysis is undertaken of these terms-dependent physical mechanisms for the variations in barotropic and baroclinic enstrophy and by means of the equations,calculation is conducted of the terms during the development of an Okhotsk blocking circulation,indicating that the total,harotropic and haroclinic enstrophies experience noticeable variations,from which we see that the latter two factors can really characterize the development as a whole,thus revealing the mechanisms at different stages of the circulation history.展开更多
In the context of 1982—1994 NCEP/NCAR wind at 12-level isobaric surfaces on a global basis calculation is made of the barotropic(mass-weighed vertical mean)and baroclinic components (difference between the actual win...In the context of 1982—1994 NCEP/NCAR wind at 12-level isobaric surfaces on a global basis calculation is made of the barotropic(mass-weighed vertical mean)and baroclinic components (difference between the actual wind at each level and barotropic component)of atmospheric flow fields,followed by dealing with the distribution features of barotropic and baroelinie patterns globally in winter and summer,alongside with the classification of global monsoons according to the surface barotropic/baroclinic patterns.Evidence suggests that the seasonal variation of both components will lead to the reversal of a prevailing wind between winter and summer,thus causing a related monsoon:the baroclinie flow pattern is indicative of a thermal circulation driven by atmospheric inhomogeneous heating chiefly from land-sea thermal contrast whilst the barotropic counterpart represents the result mainly from dynamic effects,which is helpful to the understanding of monsoon nature.And further study shows that the classical monsoon regions in tropical Asia,Africa and South America fall into a baroclinic category,those in the bi-hemispherie subtropical Pacific into a barotropic type and the East Asian subtropical monsoon generated under the joint action of both the patterns falls into a mixed category.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.40175016the Research Fund for the Doctoral Programs of Higher Education under Grant No.2000000156.
文摘In a barotropic atmosphere, new Reynolds mean momentum equations including turbulent viscosity, dispersion, and instability are used not only to derive the KdV-Burgers-Kuramoto equation but also to analyze the physical mechanism of the cascades of energy and enstrophy. It shows that it is the effects of dispersion and instability that result in the inverse cascade. Then based on the conservation laws of the energy and enstrophy, a cascade model is put forward and the processes of the cascades are described.
文摘In this paper, we have investigated large scale disturbance in barotropic atmosphere on a sphere. It demonstrates that: considering nonlinear effects of interaction between waves in barotropic vorticity equation, the wave packet of the disturbance is governed by the famous equation-nonlinear Schrodinger equation. For the solitary wave, two factors are very important: one is spherical effect of the disturbance and the other is meridional shear of blocking high. In comparison with the results of local Cartesian coordinates, the former factor is the individuality of spherical soliton.
文摘In this paper, the nonlinear waves and their barotropic stability in the tropical ocean and atmosphere are studied with the qualitative theory of the ordinary differential equation. The relationship is derived between the stability of nonlinear waves with different frequencies and the basic currents and their horizontal shear in the tropical ocean and atmosphere.
基金The work is supported by the National Natural Science Foundation of China and LASG.
文摘The scientific achievements of travelling waves in a barotropic atmosphere are introduced, including i) the existence conditions of periodic solutions (wavetrain solutions) and solitary wave solutions (pulse solutions), together with the solution finding methods and a series of related problems, ii) seeking solutions of monotonous wave (wave front) and of nonmonotonous travelling wave (oscillatory wave) by using phase plane shooting technique and hi) progress in the study of travelling wave solution at home and abroad. The investigation of travelling wave solutions in recent years has been found in mathematics, physics, chemistry, biology and other sciences. Over the past decade the problem has been the subject of much interest and become an important area of research. So it is no doubt of great significance to investigate the travelling wave solutions and thereby explain phenomena of weather.
文摘Introducing the concept of pseudo-momentum, a generalized Arnold-Dikii functional is established, and then the sufficient condition for stability of nonlinear wave motion in the barotropic nondivergent atmosphere is derived by use of variational principle. It is found that the stability of nonlinear wave motion depends not only on its streamfield distri- bution, but also on its phase speed for the propagating nonlinear wave motion. Moreover, the stability criterion of trav- elling modon is also obtained, and it is shown that the travelling modon is stable if the scale of disturbance superimposed on the travelling modon remains to be less than that of the travelling modon.
基金This work is supported by the National Natural Science Foundation of China(49975015)
文摘After the manner for studying atmospheric kinetic energy,concepts of atmospheric enstrophy (ζ~2/2)_m and barotropic and baroclinic enstrophy (ζ_m^2/2,ζ_s^2/2) are developed with their relations investigated,whereupon are established,separately,equations for the 1000- 100 hPa extent- averaged ζ_m^2/2 and ζ_s^2/2 over a limited area and on a local basis.Study shows that controlling their changes are the following factors:the terms of their fluxes (viz.,divergences).β effect,their mutual conversions,production and dissipation.Analysis is undertaken of these terms-dependent physical mechanisms for the variations in barotropic and baroclinic enstrophy and by means of the equations,calculation is conducted of the terms during the development of an Okhotsk blocking circulation,indicating that the total,harotropic and haroclinic enstrophies experience noticeable variations,from which we see that the latter two factors can really characterize the development as a whole,thus revealing the mechanisms at different stages of the circulation history.
基金National Natural Science Foundation of China under Grant No.49735170.
文摘In the context of 1982—1994 NCEP/NCAR wind at 12-level isobaric surfaces on a global basis calculation is made of the barotropic(mass-weighed vertical mean)and baroclinic components (difference between the actual wind at each level and barotropic component)of atmospheric flow fields,followed by dealing with the distribution features of barotropic and baroelinie patterns globally in winter and summer,alongside with the classification of global monsoons according to the surface barotropic/baroclinic patterns.Evidence suggests that the seasonal variation of both components will lead to the reversal of a prevailing wind between winter and summer,thus causing a related monsoon:the baroclinie flow pattern is indicative of a thermal circulation driven by atmospheric inhomogeneous heating chiefly from land-sea thermal contrast whilst the barotropic counterpart represents the result mainly from dynamic effects,which is helpful to the understanding of monsoon nature.And further study shows that the classical monsoon regions in tropical Asia,Africa and South America fall into a baroclinic category,those in the bi-hemispherie subtropical Pacific into a barotropic type and the East Asian subtropical monsoon generated under the joint action of both the patterns falls into a mixed category.