Rigid barrier deflectors can effectively prevent overspilling landslides,and can satisfy disaster prevention requirements.However,the mechanisms of interaction between natural granular flow and rigid barrier deflector...Rigid barrier deflectors can effectively prevent overspilling landslides,and can satisfy disaster prevention requirements.However,the mechanisms of interaction between natural granular flow and rigid barrier deflectors require further investigation.To date,few studies have investigated the impact of deflectors on controlling viscous debris flows for geological disaster prevention.To investigate the effect of rigid barrier deflectors on impact mechanisms,a numerical model using the smoothed particle hydrodynamics(SPH)method with the Herschel–Bulkley model is proposed to simulate the interaction between natural viscous flow and single/dual barriers with and without deflectors.This model was validated using laboratory flume test data from the literature.Then,the model was used to investigate the influence of the deflector angle and multi-barrier arrangements.The optimal configuration of multi-barriers was analyzed with consideration to the barrier height and distance between the barriers,because these metrics have a significant impact on the viscous flow pile-up,run-up,and overflow mechanisms.The investigation considered the energy dissipation process,retention efficiency,and dead-zone formation.Compared with bare barriers with similar geometric characteristics and spatial distribution,rigid barriers with deflectors exhibit superior effectiveness in preventing the overflow and overspilling of viscous debris flow.Recommendations for the rational design of deflectors and the optimal arrangement of multi-barriers are provided to mitigate geological disasters.展开更多
Deoxynivalenol(DON)is a mycotoxin that is produced by various species of Fusarium and is ubiquitous in food and feed.At low concentrations,it can cause metabolic disorders in animals and humans and,at high concentrati...Deoxynivalenol(DON)is a mycotoxin that is produced by various species of Fusarium and is ubiquitous in food and feed.At low concentrations,it can cause metabolic disorders in animals and humans and,at high concentrations,it can lead to pathological changes in the body.The impact of DON on human/animal health and animal productivity has thus attracted a great deal of attention around the world.DON causes severe damage to the intestine,including compromised intestinal barrier,mucosal damage,weakened immune function,and alterations in gut microbiota composition.These effects exacerbate intestinal infections and inflammation in livestock and poultry,posing adverse effects on overall health.Furthermore,research into biological methods for DON detoxification is a crucial avenue for future studies.This includes the utilization of adsorption,enzymatic degradation,and other biological approaches to mitigate DON's impact,offering new strategies for prevention and treatment of DON-induced diseases.Future research will focus on identifying highly efficient detoxifying microorganisms or enzymes to reduce DON levels in food and feed,thereby mitigating its risks to both animals and human health.展开更多
Research Background: Atopic dermatitis (AD) is a chronic inflammatory skin condition in children that significantly impacts physical health and quality of life. Adherence to treatment regimens is crucial for effective...Research Background: Atopic dermatitis (AD) is a chronic inflammatory skin condition in children that significantly impacts physical health and quality of life. Adherence to treatment regimens is crucial for effective disease management but is often hindered by various psychosocial and socioeconomic barriers. Parental mental health issues, family dynamics, financial constraints, and limited access to specialized care contribute to inconsistent treatment adherence, exacerbating the condition. Purpose/Aim: The aim of this study is to explore the multifaceted barriers to treatment adherence in children with AD and evaluate the effectiveness of current interventions targeting these challenges. The study seeks to identify strategies that can improve adherence and health outcomes by addressing psychosocial and socioeconomic factors. Method: The method involves a comprehensive review of existing literature on the impact of psychosocial and socioeconomic factors on treatment adherence in children with AD. The study also examines various interventions designed to address these barriers, including community support programs, family-centered interventions, financial aid, integrated care models, and telehealth solutions. Results: Results indicate that psychosocial barriers, such as parental anxiety and depression, significantly hinder effective disease management. Family dynamics, including poor communication and single-parent households, complicate adherence efforts. Socioeconomic factors, such as financial constraints and limited healthcare access, further impede adherence. Interventions that address these barriers show promise in improving treatment adherence and health outcomes. Community support programs and family-centered interventions enhance parental mental health and family communication. Financial aid programs and integrated care models help mitigate economic and logistical challenges. Telehealth solutions improve access to specialized care, particularly in underserved areas. Conclusion: The study concludes that a holistic approach integrating medical treatment with psychosocial and socioeconomic support is essential for managing pediatric AD effectively. Policy recommendations include increased funding for community support programs, expanded telehealth services, and the integration of social services with medical care. Addressing these barriers comprehensively can enhance treatment adherence and improve the quality of life for children with AD. Further research should focus on long-term outcomes and diverse populations to refine these interventions and ensure they meet the needs of all affected children.展开更多
BACKGROUND Alcohol-associated liver disease(ALD)is a leading cause of liver-related morbidity and mortality,but there are no therapeutic targets and modalities to prevent ALD-related liver fibrosis.Peroxisome prolifer...BACKGROUND Alcohol-associated liver disease(ALD)is a leading cause of liver-related morbidity and mortality,but there are no therapeutic targets and modalities to prevent ALD-related liver fibrosis.Peroxisome proliferator activated receptor(PPAR)α and δ play a key role in lipid metabolism and intestinal barrier homeostasis,which are major contributors to the pathological progression of ALD.Meanwhile,elafibranor(EFN),which is a dual PPARαand PPARδagonist,has reached a phase III clinical trial for the treatment of metabolic dysfunctionassociated steatotic liver disease and primary biliary cholangitis.However,the benefits of EFN for ALD treatment is unknown.AIM To evaluate the inhibitory effects of EFN on liver fibrosis and gut-intestinal barrier dysfunction in an ALD mouse model.METHODS ALD-related liver fibrosis was induced in female C57BL/6J mice by feeding a 2.5% ethanol(EtOH)-containing Lieber-DeCarli liquid diet and intraperitoneally injecting carbon tetrachloride thrice weekly(1 mL/kg)for 8 weeks.EFN(3 and 10 mg/kg/day)was orally administered during the experimental period.Histological and molecular analyses were performed to assess the effect of EFN on steatohepatitis,fibrosis,and intestinal barrier integrity.The EFN effects on HepG2 lipotoxicity and Caco-2 barrier function were evaluated by cell-based assays.RESULTS The hepatic steatosis,apoptosis,and fibrosis in the ALD mice model were significantly attenuated by EFN treatment.EFN promoted lipolysis and β-oxidation and enhanced autophagic and antioxidant capacities in EtOH-stimulated HepG2 cells,primarily through PPARαactivation.Moreover,EFN inhibited the Kupffer cell-mediated inflammatory response,with blunted hepatic exposure to lipopolysaccharide(LPS)and toll like receptor 4(TLR4)/nuclear factor kappa B(NF-κB)signaling.EFN improved intestinal hyperpermeability by restoring tight junction proteins and autophagy and by inhibiting apoptosis and proinflammatory responses.The protective effect on intestinal barrier function in the EtOH-stimulated Caco-2 cells was predominantly mediated by PPARδ activation.CONCLUSION EFN reduced ALD-related fibrosis by inhibiting lipid accumulation and apoptosis,enhancing hepatocyte autophagic and antioxidant capacities,and suppressing LPS/TLR4/NF-κB-mediated inflammatory responses by restoring intestinal barrier function.展开更多
Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic strok...Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic stroke remain largely unknown.The present study found that cerebral ischemia leads to oxidative stress and repression of the Wnt/β-catenin pathway.Meanwhile,Wnt/β-catenin pathway activation by the pharmacological inhibito r,TWS119,relieved oxidative stress,increased the levels of cytochrome P4501B1(CYP1B1)and tight junction-associated proteins(zonula occludens-1[ZO-1],occludin and claudin-5),as well as brain microvascular density in cerebral ischemia rats.Moreove r,rat brain microvascular endothelial cells that underwent oxygen glucose deprivation/reoxygenation displayed intense oxidative stress,suppression of the Wnt/β-catenin pathway,aggravated cell apoptosis,downregulated CYP1B1and tight junction protein levels,and inhibited cell prolife ration and migration.Overexpression ofβ-catenin or knockdown ofβ-catenin and CYP1B1 genes in rat brain mic rovascular endothelial cells at least partly ameliorated or exacerbated these effects,respectively.In addition,small interfering RNA-mediatedβ-catenin silencing decreased CYP1B1 expression,whereas CYP1B1 knoc kdown did not change the levels of glycogen synthase kinase 3β,Wnt-3a,andβ-catenin proteins in rat brain microvascular endothelial cells after oxygen glucose deprivatio n/reoxygenation.Thus,the data suggest that CYP1B1 can be regulated by Wnt/β-catenin signaling,and activation of the Wnt/β-catenin/CYP1B1 pathway contributes to alleviation of oxidative stress,increased tight junction levels,and protection of the blood-brain barrier against ischemia/hypoxia-induced injury.展开更多
Cerebral small vessel disease is a neurological disease that affects the brain microvasculature and which is commonly observed among the elderly.Although at first it was considered innocuous,small vessel disease is no...Cerebral small vessel disease is a neurological disease that affects the brain microvasculature and which is commonly observed among the elderly.Although at first it was considered innocuous,small vessel disease is nowadays regarded as one of the major vascular causes of dementia.Radiological signs of small vessel disease include small subcortical infarcts,white matter magnetic resonance imaging hyperintensities,lacunes,enlarged perivascular spaces,cerebral microbleeds,and brain atrophy;however,great heterogeneity in clinical symptoms is observed in small vessel disease patients.The pathophysiology of these lesions has been linked to multiple processes,such as hypoperfusion,defective cerebrovascular reactivity,and blood-brain barrier dysfunction.Notably,studies on small vessel disease suggest that blood-brain barrier dysfunction is among the earliest mechanisms in small vessel disease and might contribute to the development of the hallmarks of small vessel disease.Therefore,the purpose of this review is to provide a new foundation in the study of small vessel disease pathology.First,we discuss the main structural domains and functions of the blood-brain barrier.Secondly,we review the most recent evidence on blood-brain barrier dysfunction linked to small vessel disease.Finally,we conclude with a discussion on future perspectives and propose potential treatment targets and interventions.展开更多
The blood-brain barrier is a unique function of the microvasculature in the brain parenchyma that maintains homeostasis in the central nervous system.Blood-brain barrier breakdown is a common pathology in various neur...The blood-brain barrier is a unique function of the microvasculature in the brain parenchyma that maintains homeostasis in the central nervous system.Blood-brain barrier breakdown is a common pathology in various neurological diseases,such as Alzheimer’s disease,stroke,multiple sclerosis,and Parkinson’s disease.Traditionally,it has been considered a consequence of neuroinflammation or neurodegeneration,but recent advanced imaging techniques and detailed studies in animal models show that blood-brain barrier breakdown occurs early in the disease process and may precede neuronal loss.Thus,the blood-brain barrier is attractive as a potential therapeutic target for neurological diseases that lack effective therapeutics.To elucidate the molecular mechanism underlying blood-brain barrier breakdown and translate them into therapeutic strategies for neurological diseases,there is a growing demand for experimental models of human origin that allow for functional assessments.Recently,several human induced pluripotent stem cell-derived blood-brain barrier models have been established and various in vitro blood-brain barrier models using microdevices have been proposed.Especially in the Alzheimer’s disease field,the human evidence for blood-brain barrier dysfunction has been demonstrated and human induced pluripotent stem cell-derived blood-brain barrier models have suggested the putative molecular mechanisms of pathological blood-brain barrier.In this review,we summarize recent evidence of blood-brain barrier dysfunction in Alzheimer’s disease from pathological analyses,imaging studies,animal models,and stem cell sources.Additionally,we discuss the potential future directions for blood-brain barrier research.展开更多
The blood-brain barrier(BBB)(discovered and defined by Max Lewandowsky and Lina Stern,and not,as it is universally,and yet erroneously believed,by Paul Ehrlich(Verkhratsky and Pivoriunas,2023))that separates the nervo...The blood-brain barrier(BBB)(discovered and defined by Max Lewandowsky and Lina Stern,and not,as it is universally,and yet erroneously believed,by Paul Ehrlich(Verkhratsky and Pivoriunas,2023))that separates the nervous system from the circulation is evolutionarily conserved from arthropods to man.The primeval BBB of the invertebrates and some early vertebrates was made solely by glial cells and secured(in invertebrates)by septate junctions.展开更多
Post-acute ischemic stroke hyperglycemia increases the risk of hemorrhagic transformation,which is associated with blood-brain barrier disruption.Brain microvascular endothelial cells are a major component of the bloo...Post-acute ischemic stroke hyperglycemia increases the risk of hemorrhagic transformation,which is associated with blood-brain barrier disruption.Brain microvascular endothelial cells are a major component of the blood-brain barrier.Intercellular mitochondrial transfer has emerged as a novel paradigm for repairing cells with mitochondrial dysfunction.In this study,we first investigated whether mitochondrial transfer exists between brain microvascular endothelial cells,and then investigated the effects of post-acute ischemic stroke hyperglycemia on mitochondrial transfer between brain microvascular endothelial cells.We found that healthy brain microvascular endothelial cells can transfer intact mitochondria to oxygen glucose deprivation-injured brain microvascular endothelial cells.However,post-oxygen glucose deprivation hyperglycemia hindered mitochondrial transfer and exacerbated mitochondrial dysfunction.We established an in vitro brain microvascular endothelial cell model of the blood-brain barrier.We found that post-acute ischemic stroke hyperglycemia reduced the overall energy metabolism levels of brain microvascular endothelial cells and increased permeability of the blood-brain barrier.In a clinical study,we retrospectively analyzed the relationship between post-acute ischemic stroke hyperglycemia and the severity of hemorrhagic transformation.We found that post-acute ischemic stroke hyperglycemia serves as an independent predictor of severe hemorrhagic transformation.These findings suggest that post-acute ischemic stroke hyperglycemia can aggravate disruption of the blood-brain barrier by inhibiting mitochondrial transfer.展开更多
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base...The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.展开更多
General information on cell competition:Social behaviors are the basis of biological life.Like species and populations,cell communities experience Darwinian ecological interactions,and in case space and nutrient avail...General information on cell competition:Social behaviors are the basis of biological life.Like species and populations,cell communities experience Darwinian ecological interactions,and in case space and nutrient availability are not uniform throughout the tissue,they begin to compete for ground occupancy.展开更多
A combination of hydrogels and microfluidics allows the construction of biomimetic three-dimensional(3D)tissue models in vitro,which are also known as organ-on-a-chipmodels.The hydrogel patterningwith awell-controlled...A combination of hydrogels and microfluidics allows the construction of biomimetic three-dimensional(3D)tissue models in vitro,which are also known as organ-on-a-chipmodels.The hydrogel patterningwith awell-controlled spatial distribution is typically achieved by embedding sophisticated microstructures to act as a boundary.However,these physical barriers inevitably expose cells/tissues to a less physiologically relevant microenvironment than in vivo conditions.Herein,we present a novel dissolvable temporary barrier(DTB)strategy that allows robust and flexible hydrogel patterning with great freedom of design and desirable flow stimuli for cellular hydrogels.The key aspect of this approach is the patterning of a water-soluble rigid barrier as a guiding path for the hydrogel using stencil printing technology,followed by a barrier-free medium perfusion after the dissolution of the DTB.Single and multiple tissue compartments with different geometries can be established using either straight or curved DTB structures.The effectiveness of this strategy is further validated by generating a 3D vascular network through vasculogenesis and angiogenesis using a vascularized microtumor model.As a new proof-of-concept in vasculature-on-a-chip,DTB enables seamless contact between the hydrogel and the culture medium in closed microdevices,which is an improved protocol for the fabrication ofmultiorgan chips.Therefore,we expect it to serve as a promising paradigm for organ-on-a-chip devices for the development of tumor vascularization and drug evaluation in the future preclinical studies.展开更多
Background Intestinal barrier is a dynamic interface between the body and the ingested food components, however, dietary components or xenobiotics could compromise intestinal integrity, causing health risks to the hos...Background Intestinal barrier is a dynamic interface between the body and the ingested food components, however, dietary components or xenobiotics could compromise intestinal integrity, causing health risks to the host. Gossypol, a toxic component in cottonseed meal(CSM), caused intestinal injury in fish or other monogastric animals. It has been demonstrated that probiotics administration benefits the intestinal barrier integrity, but the efficacy of probiotics in maintaining intestinal health when the host is exposed to gossypol remains unclear. Here, a strain(YC) affiliated to Pediococcus pentosaceus was isolated from the gut of Nile tilapia(Oreochromis niloticus) and its potential to repair gossypol-induced intestinal damage was evaluated.Results A total of 270 Nile tilapia(2.20 ± 0.02 g) were allotted in 3 groups with 3 tanks each and fed with 3 diets including CON(control diet), GOS(control diet containing 300 mg/kg gossypol) and GP(control diet containing 300 mg/kg gossypol and 10^(8) colony-forming unit(CFU)/g P. pentosaceus YC), respectively. After 10 weeks, addition of P. pentosaceus YC restored growth retardation and intestinal injury induced by gossypol in Nile tilapia. Transcriptome analysis and si RNA interference experiments demonstrated that NOD-like receptors(NLR) family caspase recruitment domain(CARD) domain containing 3(Nlrc3) inhibition might promote intestinal stem cell(ISC) proliferation, as well as maintaining gut barrier integrity. 16S r RNA sequencing and gas chromatography-mass spectrometry(GC-MS) revealed that addition of P. pentosaceus YC altered the composition of gut microbiota and increased the content of propionate in fish gut. In vitro studies on propionate's function demonstrated that it suppressed nlrc3 expression and promoted wound healing in Caco-2 cell model.Conclusions The present study reveals that P. pentosaceus YC has the capacity to ameliorate intestinal barrier injury by modulating gut microbiota composition and elevating propionate level. This finding offers a promising strategy for the feed industry to incorporate cottonseed meal into fish feed formulations.展开更多
A nitrogen-polarity(N-polarity)GaN-based high electron mobility transistor(HEMT)shows great potential for high-fre-quency solid-state power amplifier applications because its two-dimensional electron gas(2DEG)density ...A nitrogen-polarity(N-polarity)GaN-based high electron mobility transistor(HEMT)shows great potential for high-fre-quency solid-state power amplifier applications because its two-dimensional electron gas(2DEG)density and mobility are mini-mally affected by device scaling.However,the Schottky barrier height(SBH)of N-polarity GaN is low.This leads to a large gate leakage in N-polarity GaN-based HEMTs.In this work,we investigate the effect of annealing on the electrical characteristics of N-polarity GaN-based Schottky barrier diodes(SBDs)with Ni/Au electrodes.Our results show that the annealing time and tem-perature have a large influence on the electrical properties of N-polarity GaN SBDs.Compared to the N-polarity SBD without annealing,the SBH and rectification ratio at±5 V of the SBD are increased from 0.51 eV and 30 to 0.77 eV and 7700,respec-tively,and the ideal factor of the SBD is decreased from 1.66 to 1.54 after an optimized annealing process.Our analysis results suggest that the improvement of the electrical properties of SBDs after annealing is mainly due to the reduction of the inter-face state density between Schottky contact metals and N-polarity GaN and the increase of barrier height for the electron emis-sion from the trap state at low reverse bias.展开更多
Background Global warming leading to heat stress(HS)is becoming a major challenge for broiler production.This study aimed to explore the protective effects of seaweed(Enteromorpha prolifera)polysaccharides(EPS)on the ...Background Global warming leading to heat stress(HS)is becoming a major challenge for broiler production.This study aimed to explore the protective effects of seaweed(Enteromorpha prolifera)polysaccharides(EPS)on the intestinal barrier function,microbial ecology,and performance of broilers under HS.A total of 144 yellow-feathered broilers(male,56 days old)with 682.59±7.38 g were randomly assigned to 3 groups:1)TN(thermal neutral zone,23.6±1.8℃),2)HS(heat stress,33.2±1.5℃ for 10 h/d),and 3)HSE(HS+0.1%EPS).Each group contained 6 replicates with 8 broilers per replicate.The study was conducted for 4 weeks;feed intake and body weights were measured at the end of weeks 2 and 4.At the end of the feeding trial,small intestine samples were collected for histomorphology,antioxidant,secretory immunoglobulin A(s Ig A)content,apoptosis,gene and protein expression analysis;cecal contents were also collected for microbiota analysis based on 16S r DNA sequencing.Results Dietary EPS promoted the average daily gain(ADG)of broilers during 3–4 weeks of HS(P<0.05).At the end of HS on broilers,the activity of total superoxide dismutase(T-SOD),glutathione S-transferase(GST),and the content of s Ig A in jejunum were improved by EPS supplementation(P<0.05).Besides,dietary EPS reduced the epithelial cell apoptosis of jejunum and ileum in heat-stressed broilers(P<0.05).Addition of EPS in HS group broilers'diet upregulated the relative m RNA expression of Occludin,ZO-1,γ-GCLc and IL-10 of the jejunum(P<0.05),whereas downregulated the relative m RNA expression of NF-κB p65,TNF-αand IL-1βof the jejunum(P<0.05).Dietary EPS increased the protein expression of Occludin and ZO-1,whereas it reduced the protein expression of NF-κB p65 and MLCK(P<0.01)and tended to decrease the protein expression of TNF-α(P=0.094)in heat-stressed broilers.Furthermore,the proportions of Bacteroides and Oscillospira among the three groups were positively associated with jejunal apoptosis and pro-inflammatory cytokine expression(P<0.05)and negatively correlated with jejunal Occludin level(P<0.05).However,the proportions of Lactobacillus,Barnesiella,Subdoligranulum,Megasphaera,Collinsella,and Blautia among the three groups were positively related to ADG(P<0.05).Conclusions EPS can be used as a feed additive in yellow-feathered broilers.It effectively improves growth performance and alleviates HS-induced intestinal injury by relieving inflammatory damage and improving the tight junction proteins expression.These beneficial effects may be related to inhibiting NF-κB/MLCK signaling pathway activation and regulation of cecal microbiota.展开更多
Rare-earth silicates are promising environmental barrier coatings(EBCs)that can protect SiC_(f)/Si C_(m)substrates in next-genera tion gas turbine blades.Notably,RE_(2)Si_(2)O_(7)(RE=Yb and Ho)shows potential as an EB...Rare-earth silicates are promising environmental barrier coatings(EBCs)that can protect SiC_(f)/Si C_(m)substrates in next-genera tion gas turbine blades.Notably,RE_(2)Si_(2)O_(7)(RE=Yb and Ho)shows potential as an EBC due to its coefficient of thermal expansion(CTE)compatible with substrates and high resistance to water vapor corrosion.The target operating temperature for next-generation tur bine blades is 1400°C.Corrosion is inevitable during adhesion to molten volcanic ash,and thus,understanding the corrosion behavior o the material is crucial to its reliability.This study investigates the high-temperature corrosion behavior of sintered RE_(2)Si_(2)O_(7)(RE=Yb and Ho).Samples were prepared using a solid-state reaction and hot-press method.They were then exposed to volcanic ash at 1400°C for 224,and 48 h.After 48 h of exposure,volcanic ash did not react with Yb_(2)Si_(2)O_(7)but penetrated its interior,causing damage.Meanwhile Ho_(2)Si_(2)O_(7)was partially dissolved in the molten volcanic ash,forming a reaction zone that prevented volcanic ash melts from penetrating the interior.With increasing heat treatment time,the reaction zone expanded,and the thickness of the acicular apatite grains increased The Ca:Si ratios in the residual volcanic ash were mostly unchanged for Yb_(2)Si_(2)O_(7)but decreased considerably over time for Ho_(2)Si_(2)O_(7).Th Ca in volcanic ash was consumed and formed apatite,indicating that RE^(3+)ions with large ionic radii(Ho>Yb)easily precipitated apatit from the volcanic ash.展开更多
This study investigates the impact of the salinity barrier layer(BL)on the upper ocean response to Super Typhoon Mangkhut(2018)in the western North Pacific.After the passage of Mangkhut,a noticeable increase(~0.6 psu)...This study investigates the impact of the salinity barrier layer(BL)on the upper ocean response to Super Typhoon Mangkhut(2018)in the western North Pacific.After the passage of Mangkhut,a noticeable increase(~0.6 psu)in sea surface salinity and a weak decrease(<1℃)in sea surface temperature(SST)were observed on the right side of the typhoon track.Mangkhut-induced SST change can be divided into the three stages,corresponding to the variations in BL thickness and SST before,during,and after the passage of Mangkhut.During the pre-typhoon stage,SST slightly warmed due to the entrainment of BL warm water,which suppressed the cooling induced by surface heat fluxes and horizontal advection.During the forced stage,SST cooling was controlled by entrainment,and the preexisting BL reduced the total cooling by 0.89℃ d-1,thus significantly weakening the overall SST cooling induced by Mangkhut.During the relaxation stage,the SST cooling was primarily caused by the entrainment.Our results indicate that a preexisting BL can limit typhoon-induced SST cooling by suppressing the entrainment of cold thermocline water,which contributed to Mangkhut becoming the strongest typhoon in 2018.展开更多
Background Zinc glycine chelate(Zn-Gly)has anti-inflammation and growth-promoting properties;however,the mechanism of Zn-Gly contribution to gut barrier function in Cherry Valley ducks during intestinal inflammation i...Background Zinc glycine chelate(Zn-Gly)has anti-inflammation and growth-promoting properties;however,the mechanism of Zn-Gly contribution to gut barrier function in Cherry Valley ducks during intestinal inflammation is unknown.Three-hundred 1-day-old ducks were divided into 5 groups(6 replicates and 10 ducks per replicate)in a completely randomized design:the control and dextran sulfate sodium(DSS)groups were fed a corn-soybean meal basal diet,and experimental groups received supplements of 70,120 or 170 mg/kg Zn in form of Zn-Gly.The DSS and treatment groups were given 2 mL of 0.45 g/mL DSS daily during d 15–21,and the control group received normal saline.The experiment lasted 21 d.Results Compared with DSS group,70,120 and 170 mg/kg Zn significantly increased body weight(BW),villus height and the ratio of villus to crypt,and significantly decreased the crypt depth of jejunum at 21 d.The number of goblet cells in jejunal villi in the Zn-Gly group was significantly increased by periodic acid-Schiff staining.Compared with control,the content of intestinal permeability marker D-lactic acid(D-LA)and fluxes of fluorescein isothiocyanate(FITC-D)in plasma of DSS group significantly increased,and 170 mg/kg Zn supplementation significantly decreased the D-LA content and FITC-D fluxes.Compared with control,contents of plasma,jejunum endotoxin and jejunum pro-inflammatory factors IL-1β,IL-6 and TNF-αwere significantly increased in DSS group,and were significantly decreased by 170 mg/kg Zn supplementation.Dietary Zn significantly increased the contents of anti-inflammatory factors IL-10,IL-22 and sIgA and IgG in jejunum.Real-time PCR and Western blot results showed that 170 mg/kg Zn supplementation significantly increased mRNA expression levels of CLDN-1 and expression of OCLN protein in jejunum,and decreased gene and protein expression of CLDN-2 compared with DSS group.The 120 mg/kg Zn significantly promoted the expressions of IL-22 and IgA.Dietary Zn-Gly supplementation significantly decreased pro-inflammatory genes IL-8 and TNF-αexpression levels and TNF-αprotein expression in jejunum.Additionally,Zn significantly reduced the gene and protein expression of TLR4,MYD88 and NF-κB p65.Conclusions Zn-Gly improved duck BW and alleviated intestinal injury by regulating intestinal morphology,barrier function and gut inflammation-related signal pathways TLR4/MYD88/NF-κB p65.展开更多
Background Deoxynivalenol(DON)is a mycotoxin that has received recognition worldwide because of its ability to cause growth delay,nutrient malabsorption,weight loss,emesis,and a reduction of feed intake in livestock.S...Background Deoxynivalenol(DON)is a mycotoxin that has received recognition worldwide because of its ability to cause growth delay,nutrient malabsorption,weight loss,emesis,and a reduction of feed intake in livestock.Since DON-contaminated feedstuff is absorbed in the gastrointestinal tract,we used chicken organoids to assess the DON-induced dysfunction of the small intestine.Results We established a culture system using chicken organoids and characterized the organoids at passages 1 and 10.We confirmed the mRNA expression levels of various cell markers in the organoids,such as KI67,leucine-rich repeat containing G protein-coupled receptor 5(Lgr5),mucin 2(MUC2),chromogranin A(CHGA),cytokeratin 19(CK19),lysozyme(LYZ),and microtubule-associated doublecortin-like kinase 1(DCLK1),and compared the results to those of the small intestine.Our results showed that the organoids displayed functional similarities in permeability compared to the small intestine.DON damaged the tight junctions of the organoids,which resulted in increased permeability.Conclusions Our organoid culture displayed topological,genetic,and functional similarities with the small intes-tine cells.Based on these similarities,we confirmed that DON causes small intestine dysfunction.Chicken organoids offer a practical model for the research of harmful substances.展开更多
Background Transmissible gastroenteritis virus(TGEV)is one of the main pathogens causing severe diarrhea of pig-lets.The pathogenesis of TGEV is closely related to intestinal inflammation.All-trans retinoic acid(ATRA)...Background Transmissible gastroenteritis virus(TGEV)is one of the main pathogens causing severe diarrhea of pig-lets.The pathogenesis of TGEV is closely related to intestinal inflammation.All-trans retinoic acid(ATRA)is the main active metabolite of vitamin A,which has immunomodulatory and anti-inflammatory properties.However,it is unclear whether ATRA can alleviate TGEV-induced intestinal inflammation and barrier dysfunction in piglets.This study aimed to investigate the effects of ATRA on growth performance,diarrhea,intestinal inflammation and intesti-nal barrier integrity of TGEV-challenged piglets.Methods In a 19-d study,32 weaned piglets were randomly divided into 4 treatments:Control group(basal diet),TGEV group(basal diet+TGEV challenge),TGEV+ATRA5 group(basal diet+5 mg/d ATRA+TGEV challenge)and TGEV+ATRA15 group(basal diet+15 mg/d ATRA+TGEV challenge).On d 14,piglets were orally administered TGEV or the sterile medium.Results Feeding piglets with 5 and 15 mg/d ATRA alleviated the growth inhibition and diarrhea induced by TGEV(P<0.05).Feeding piglets with 5 and 15 mg/d ATRA also inhibited the increase of serum diamine oxidase(DAO)activ-ity and the decrease of occludin and claudin-1 protein levels in jejunal mucosa induced by TGEV,and maintained intestinal barrier integrity(P<0.05).Meanwhile,5 mg/d ATRA feeding increased the sucrase activity and the expres-sions of nutrient transporter related genes(GLUT2 and SLC7A1)in jejunal mucosa of TGEV-challenged piglets(P<0.05).Furthermore,5 mg/d ATRA feeding attenuated TGEV-induced intestinal inflammatory response by inhibit-ing the release of interleukin(IL)-1β,IL-8 and tumor necrosis factor-α(TNF-α),and promoting the secretion of IL-10 and secretory immunoglobulin A(sIgA)(P<0.05).Feeding 5 mg/d ATRA also down-regulated the expressions of Toll-like receptors and RIG-I like receptors signaling pathway related genes(TLR3,TLR4,RIG-I,MyD88,TRIF and MAVS)and the phosphorylation level of nuclear factor-κB-p65(NF-κB p65),and up-regulated the inhibitor kappa B alpha(IκBα)protein level in jejunal mucosa of TGEV-challenged piglets(P<0.05).Conclusions ATRA alleviated TGEV-induced intestinal barrier damage by inhibiting inflammatory response,thus improving the growth performance and inhibiting diarrhea of piglets.The mechanism was associated with the inhibi-tion of NF-κB signaling pathway mediated by TLR3,TLR4 and RIG-I.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42120104008 and 42207198).
文摘Rigid barrier deflectors can effectively prevent overspilling landslides,and can satisfy disaster prevention requirements.However,the mechanisms of interaction between natural granular flow and rigid barrier deflectors require further investigation.To date,few studies have investigated the impact of deflectors on controlling viscous debris flows for geological disaster prevention.To investigate the effect of rigid barrier deflectors on impact mechanisms,a numerical model using the smoothed particle hydrodynamics(SPH)method with the Herschel–Bulkley model is proposed to simulate the interaction between natural viscous flow and single/dual barriers with and without deflectors.This model was validated using laboratory flume test data from the literature.Then,the model was used to investigate the influence of the deflector angle and multi-barrier arrangements.The optimal configuration of multi-barriers was analyzed with consideration to the barrier height and distance between the barriers,because these metrics have a significant impact on the viscous flow pile-up,run-up,and overflow mechanisms.The investigation considered the energy dissipation process,retention efficiency,and dead-zone formation.Compared with bare barriers with similar geometric characteristics and spatial distribution,rigid barriers with deflectors exhibit superior effectiveness in preventing the overflow and overspilling of viscous debris flow.Recommendations for the rational design of deflectors and the optimal arrangement of multi-barriers are provided to mitigate geological disasters.
基金funded by the National Natural Science Foundation of China(32273074,31972746,31872538 and 31772809)the Basic Scientific Research Project of Liaoning Provincial Department of Education,China(LJKZ0632)。
文摘Deoxynivalenol(DON)is a mycotoxin that is produced by various species of Fusarium and is ubiquitous in food and feed.At low concentrations,it can cause metabolic disorders in animals and humans and,at high concentrations,it can lead to pathological changes in the body.The impact of DON on human/animal health and animal productivity has thus attracted a great deal of attention around the world.DON causes severe damage to the intestine,including compromised intestinal barrier,mucosal damage,weakened immune function,and alterations in gut microbiota composition.These effects exacerbate intestinal infections and inflammation in livestock and poultry,posing adverse effects on overall health.Furthermore,research into biological methods for DON detoxification is a crucial avenue for future studies.This includes the utilization of adsorption,enzymatic degradation,and other biological approaches to mitigate DON's impact,offering new strategies for prevention and treatment of DON-induced diseases.Future research will focus on identifying highly efficient detoxifying microorganisms or enzymes to reduce DON levels in food and feed,thereby mitigating its risks to both animals and human health.
文摘Research Background: Atopic dermatitis (AD) is a chronic inflammatory skin condition in children that significantly impacts physical health and quality of life. Adherence to treatment regimens is crucial for effective disease management but is often hindered by various psychosocial and socioeconomic barriers. Parental mental health issues, family dynamics, financial constraints, and limited access to specialized care contribute to inconsistent treatment adherence, exacerbating the condition. Purpose/Aim: The aim of this study is to explore the multifaceted barriers to treatment adherence in children with AD and evaluate the effectiveness of current interventions targeting these challenges. The study seeks to identify strategies that can improve adherence and health outcomes by addressing psychosocial and socioeconomic factors. Method: The method involves a comprehensive review of existing literature on the impact of psychosocial and socioeconomic factors on treatment adherence in children with AD. The study also examines various interventions designed to address these barriers, including community support programs, family-centered interventions, financial aid, integrated care models, and telehealth solutions. Results: Results indicate that psychosocial barriers, such as parental anxiety and depression, significantly hinder effective disease management. Family dynamics, including poor communication and single-parent households, complicate adherence efforts. Socioeconomic factors, such as financial constraints and limited healthcare access, further impede adherence. Interventions that address these barriers show promise in improving treatment adherence and health outcomes. Community support programs and family-centered interventions enhance parental mental health and family communication. Financial aid programs and integrated care models help mitigate economic and logistical challenges. Telehealth solutions improve access to specialized care, particularly in underserved areas. Conclusion: The study concludes that a holistic approach integrating medical treatment with psychosocial and socioeconomic support is essential for managing pediatric AD effectively. Policy recommendations include increased funding for community support programs, expanded telehealth services, and the integration of social services with medical care. Addressing these barriers comprehensively can enhance treatment adherence and improve the quality of life for children with AD. Further research should focus on long-term outcomes and diverse populations to refine these interventions and ensure they meet the needs of all affected children.
文摘BACKGROUND Alcohol-associated liver disease(ALD)is a leading cause of liver-related morbidity and mortality,but there are no therapeutic targets and modalities to prevent ALD-related liver fibrosis.Peroxisome proliferator activated receptor(PPAR)α and δ play a key role in lipid metabolism and intestinal barrier homeostasis,which are major contributors to the pathological progression of ALD.Meanwhile,elafibranor(EFN),which is a dual PPARαand PPARδagonist,has reached a phase III clinical trial for the treatment of metabolic dysfunctionassociated steatotic liver disease and primary biliary cholangitis.However,the benefits of EFN for ALD treatment is unknown.AIM To evaluate the inhibitory effects of EFN on liver fibrosis and gut-intestinal barrier dysfunction in an ALD mouse model.METHODS ALD-related liver fibrosis was induced in female C57BL/6J mice by feeding a 2.5% ethanol(EtOH)-containing Lieber-DeCarli liquid diet and intraperitoneally injecting carbon tetrachloride thrice weekly(1 mL/kg)for 8 weeks.EFN(3 and 10 mg/kg/day)was orally administered during the experimental period.Histological and molecular analyses were performed to assess the effect of EFN on steatohepatitis,fibrosis,and intestinal barrier integrity.The EFN effects on HepG2 lipotoxicity and Caco-2 barrier function were evaluated by cell-based assays.RESULTS The hepatic steatosis,apoptosis,and fibrosis in the ALD mice model were significantly attenuated by EFN treatment.EFN promoted lipolysis and β-oxidation and enhanced autophagic and antioxidant capacities in EtOH-stimulated HepG2 cells,primarily through PPARαactivation.Moreover,EFN inhibited the Kupffer cell-mediated inflammatory response,with blunted hepatic exposure to lipopolysaccharide(LPS)and toll like receptor 4(TLR4)/nuclear factor kappa B(NF-κB)signaling.EFN improved intestinal hyperpermeability by restoring tight junction proteins and autophagy and by inhibiting apoptosis and proinflammatory responses.The protective effect on intestinal barrier function in the EtOH-stimulated Caco-2 cells was predominantly mediated by PPARδ activation.CONCLUSION EFN reduced ALD-related fibrosis by inhibiting lipid accumulation and apoptosis,enhancing hepatocyte autophagic and antioxidant capacities,and suppressing LPS/TLR4/NF-κB-mediated inflammatory responses by restoring intestinal barrier function.
基金supported by the National Natural Science Foundation of China,No.81771250(to XC)the Natural Science Foundation of Fujian Province,Nos.2020J011059(to XC),2020R1011004(to YW),2021J01374(to XZ)+1 种基金Medical Innovation Project of Fujian Province,No.2021 CXB002(to XC)Fujian Research and Training Grants for Young and Middle-aged Leaders in Healthcare(to XC)。
文摘Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic stroke remain largely unknown.The present study found that cerebral ischemia leads to oxidative stress and repression of the Wnt/β-catenin pathway.Meanwhile,Wnt/β-catenin pathway activation by the pharmacological inhibito r,TWS119,relieved oxidative stress,increased the levels of cytochrome P4501B1(CYP1B1)and tight junction-associated proteins(zonula occludens-1[ZO-1],occludin and claudin-5),as well as brain microvascular density in cerebral ischemia rats.Moreove r,rat brain microvascular endothelial cells that underwent oxygen glucose deprivation/reoxygenation displayed intense oxidative stress,suppression of the Wnt/β-catenin pathway,aggravated cell apoptosis,downregulated CYP1B1and tight junction protein levels,and inhibited cell prolife ration and migration.Overexpression ofβ-catenin or knockdown ofβ-catenin and CYP1B1 genes in rat brain mic rovascular endothelial cells at least partly ameliorated or exacerbated these effects,respectively.In addition,small interfering RNA-mediatedβ-catenin silencing decreased CYP1B1 expression,whereas CYP1B1 knoc kdown did not change the levels of glycogen synthase kinase 3β,Wnt-3a,andβ-catenin proteins in rat brain microvascular endothelial cells after oxygen glucose deprivatio n/reoxygenation.Thus,the data suggest that CYP1B1 can be regulated by Wnt/β-catenin signaling,and activation of the Wnt/β-catenin/CYP1B1 pathway contributes to alleviation of oxidative stress,increased tight junction levels,and protection of the blood-brain barrier against ischemia/hypoxia-induced injury.
基金supported by China Scholarship Council(202208210093,to RJ)。
文摘Cerebral small vessel disease is a neurological disease that affects the brain microvasculature and which is commonly observed among the elderly.Although at first it was considered innocuous,small vessel disease is nowadays regarded as one of the major vascular causes of dementia.Radiological signs of small vessel disease include small subcortical infarcts,white matter magnetic resonance imaging hyperintensities,lacunes,enlarged perivascular spaces,cerebral microbleeds,and brain atrophy;however,great heterogeneity in clinical symptoms is observed in small vessel disease patients.The pathophysiology of these lesions has been linked to multiple processes,such as hypoperfusion,defective cerebrovascular reactivity,and blood-brain barrier dysfunction.Notably,studies on small vessel disease suggest that blood-brain barrier dysfunction is among the earliest mechanisms in small vessel disease and might contribute to the development of the hallmarks of small vessel disease.Therefore,the purpose of this review is to provide a new foundation in the study of small vessel disease pathology.First,we discuss the main structural domains and functions of the blood-brain barrier.Secondly,we review the most recent evidence on blood-brain barrier dysfunction linked to small vessel disease.Finally,we conclude with a discussion on future perspectives and propose potential treatment targets and interventions.
基金supported by the Uehara Memorial Foundation,JSPS under the Joint Research Program implemented in association with SNSF(JRPs),Grant No.JPJSJRP20221507 and KAKENHI Grant No.22K15711,JST FOREST Program(Grant No.JPMJFR2269,Japan)2022 iPS Academia Japan Grant,Life Science Foundation of Japan,Kato Memorial Bioscience Foundation,THE YUKIHIKO MIYATA MEMORIAL TRUST FOR ALS RESEARCH,the ICHIRO KANEHARA FOUNDATION,Takeda Science Foundation,and the YAMAGUCHI UNIVERSITY FUNDATION(all to HN).
文摘The blood-brain barrier is a unique function of the microvasculature in the brain parenchyma that maintains homeostasis in the central nervous system.Blood-brain barrier breakdown is a common pathology in various neurological diseases,such as Alzheimer’s disease,stroke,multiple sclerosis,and Parkinson’s disease.Traditionally,it has been considered a consequence of neuroinflammation or neurodegeneration,but recent advanced imaging techniques and detailed studies in animal models show that blood-brain barrier breakdown occurs early in the disease process and may precede neuronal loss.Thus,the blood-brain barrier is attractive as a potential therapeutic target for neurological diseases that lack effective therapeutics.To elucidate the molecular mechanism underlying blood-brain barrier breakdown and translate them into therapeutic strategies for neurological diseases,there is a growing demand for experimental models of human origin that allow for functional assessments.Recently,several human induced pluripotent stem cell-derived blood-brain barrier models have been established and various in vitro blood-brain barrier models using microdevices have been proposed.Especially in the Alzheimer’s disease field,the human evidence for blood-brain barrier dysfunction has been demonstrated and human induced pluripotent stem cell-derived blood-brain barrier models have suggested the putative molecular mechanisms of pathological blood-brain barrier.In this review,we summarize recent evidence of blood-brain barrier dysfunction in Alzheimer’s disease from pathological analyses,imaging studies,animal models,and stem cell sources.Additionally,we discuss the potential future directions for blood-brain barrier research.
基金funding from European Regional Development Fund(project No 13.1.1-LMT-K-718-05-0005)under grant agreement with the Research Council of Lithuania(LMTLT)。
文摘The blood-brain barrier(BBB)(discovered and defined by Max Lewandowsky and Lina Stern,and not,as it is universally,and yet erroneously believed,by Paul Ehrlich(Verkhratsky and Pivoriunas,2023))that separates the nervous system from the circulation is evolutionarily conserved from arthropods to man.The primeval BBB of the invertebrates and some early vertebrates was made solely by glial cells and secured(in invertebrates)by septate junctions.
基金supported by the Ningbo Public Welfare Science and Technology Program,No.2022S023(to JY)Ningbo Natural Science Foundation,No.2022J211(to JS)+2 种基金Ningbo Medical and Health Brand Discipline,No.PPXK2018-04(to XG)Ningbo Top Medical and Health Research Program,No.2022020304(to XG)Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province,No.2022E10026(to YH)。
文摘Post-acute ischemic stroke hyperglycemia increases the risk of hemorrhagic transformation,which is associated with blood-brain barrier disruption.Brain microvascular endothelial cells are a major component of the blood-brain barrier.Intercellular mitochondrial transfer has emerged as a novel paradigm for repairing cells with mitochondrial dysfunction.In this study,we first investigated whether mitochondrial transfer exists between brain microvascular endothelial cells,and then investigated the effects of post-acute ischemic stroke hyperglycemia on mitochondrial transfer between brain microvascular endothelial cells.We found that healthy brain microvascular endothelial cells can transfer intact mitochondria to oxygen glucose deprivation-injured brain microvascular endothelial cells.However,post-oxygen glucose deprivation hyperglycemia hindered mitochondrial transfer and exacerbated mitochondrial dysfunction.We established an in vitro brain microvascular endothelial cell model of the blood-brain barrier.We found that post-acute ischemic stroke hyperglycemia reduced the overall energy metabolism levels of brain microvascular endothelial cells and increased permeability of the blood-brain barrier.In a clinical study,we retrospectively analyzed the relationship between post-acute ischemic stroke hyperglycemia and the severity of hemorrhagic transformation.We found that post-acute ischemic stroke hyperglycemia serves as an independent predictor of severe hemorrhagic transformation.These findings suggest that post-acute ischemic stroke hyperglycemia can aggravate disruption of the blood-brain barrier by inhibiting mitochondrial transfer.
基金the China Scholarship Council(202106690037)the Natural Science Foundation of Anhui Province(19080885QE194)。
文摘The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.
基金supported by a collaborative project between“INFN-Laboratori Nazionali del Gran Sasso”and University of L’Aquila,Dept.“Life,Health and Environmental Sciences”(to DG).
文摘General information on cell competition:Social behaviors are the basis of biological life.Like species and populations,cell communities experience Darwinian ecological interactions,and in case space and nutrient availability are not uniform throughout the tissue,they begin to compete for ground occupancy.
基金supported by the National Natural Science Foundation of China(Nos.31972929 and 62231025)the Research Program of Shanghai Science and Technology Committee(Nos.21140901300 and 20DZ2220400)+3 种基金the Natural Science Foundation of Chongqing,China(No.CSTB2022NSCQ-MSX0767)the Interdisciplinary Program of Shanghai Jiao Tong University(Nos.YG2021ZD22 and YG2023LC04)the Foundation of National Center for Translational Medicine(Shanghai)SHU Branch(No.SUITM-2023008)the Cross-disciplinary Research Fund of Shanghai Ninth People’s Hospital,Shanghai Jiao Tong University School of Medicine(No.JYJC202108).
文摘A combination of hydrogels and microfluidics allows the construction of biomimetic three-dimensional(3D)tissue models in vitro,which are also known as organ-on-a-chipmodels.The hydrogel patterningwith awell-controlled spatial distribution is typically achieved by embedding sophisticated microstructures to act as a boundary.However,these physical barriers inevitably expose cells/tissues to a less physiologically relevant microenvironment than in vivo conditions.Herein,we present a novel dissolvable temporary barrier(DTB)strategy that allows robust and flexible hydrogel patterning with great freedom of design and desirable flow stimuli for cellular hydrogels.The key aspect of this approach is the patterning of a water-soluble rigid barrier as a guiding path for the hydrogel using stencil printing technology,followed by a barrier-free medium perfusion after the dissolution of the DTB.Single and multiple tissue compartments with different geometries can be established using either straight or curved DTB structures.The effectiveness of this strategy is further validated by generating a 3D vascular network through vasculogenesis and angiogenesis using a vascularized microtumor model.As a new proof-of-concept in vasculature-on-a-chip,DTB enables seamless contact between the hydrogel and the culture medium in closed microdevices,which is an improved protocol for the fabrication ofmultiorgan chips.Therefore,we expect it to serve as a promising paradigm for organ-on-a-chip devices for the development of tumor vascularization and drug evaluation in the future preclinical studies.
基金supported by the Provincial Science and Technology Innovative Program for Carbon Peak and Carbon neutrality of Jiangsu of China (BE2022422)National Natural Science Foundation of China (32373145)。
文摘Background Intestinal barrier is a dynamic interface between the body and the ingested food components, however, dietary components or xenobiotics could compromise intestinal integrity, causing health risks to the host. Gossypol, a toxic component in cottonseed meal(CSM), caused intestinal injury in fish or other monogastric animals. It has been demonstrated that probiotics administration benefits the intestinal barrier integrity, but the efficacy of probiotics in maintaining intestinal health when the host is exposed to gossypol remains unclear. Here, a strain(YC) affiliated to Pediococcus pentosaceus was isolated from the gut of Nile tilapia(Oreochromis niloticus) and its potential to repair gossypol-induced intestinal damage was evaluated.Results A total of 270 Nile tilapia(2.20 ± 0.02 g) were allotted in 3 groups with 3 tanks each and fed with 3 diets including CON(control diet), GOS(control diet containing 300 mg/kg gossypol) and GP(control diet containing 300 mg/kg gossypol and 10^(8) colony-forming unit(CFU)/g P. pentosaceus YC), respectively. After 10 weeks, addition of P. pentosaceus YC restored growth retardation and intestinal injury induced by gossypol in Nile tilapia. Transcriptome analysis and si RNA interference experiments demonstrated that NOD-like receptors(NLR) family caspase recruitment domain(CARD) domain containing 3(Nlrc3) inhibition might promote intestinal stem cell(ISC) proliferation, as well as maintaining gut barrier integrity. 16S r RNA sequencing and gas chromatography-mass spectrometry(GC-MS) revealed that addition of P. pentosaceus YC altered the composition of gut microbiota and increased the content of propionate in fish gut. In vitro studies on propionate's function demonstrated that it suppressed nlrc3 expression and promoted wound healing in Caco-2 cell model.Conclusions The present study reveals that P. pentosaceus YC has the capacity to ameliorate intestinal barrier injury by modulating gut microbiota composition and elevating propionate level. This finding offers a promising strategy for the feed industry to incorporate cottonseed meal into fish feed formulations.
基金This work was supported by the National Key R&D Program of China(Nos.2022YFB3605205,2021YFB3601000,and 2021YFB3601002)the National Natural Science Foundation of China(Nos.U22A20134,62074069,62104078,and 62104079)the Science and Technology Developing Project of Jilin Province(Nos.20220201065GX,20230101053JC,and 20220101119JC).
文摘A nitrogen-polarity(N-polarity)GaN-based high electron mobility transistor(HEMT)shows great potential for high-fre-quency solid-state power amplifier applications because its two-dimensional electron gas(2DEG)density and mobility are mini-mally affected by device scaling.However,the Schottky barrier height(SBH)of N-polarity GaN is low.This leads to a large gate leakage in N-polarity GaN-based HEMTs.In this work,we investigate the effect of annealing on the electrical characteristics of N-polarity GaN-based Schottky barrier diodes(SBDs)with Ni/Au electrodes.Our results show that the annealing time and tem-perature have a large influence on the electrical properties of N-polarity GaN SBDs.Compared to the N-polarity SBD without annealing,the SBH and rectification ratio at±5 V of the SBD are increased from 0.51 eV and 30 to 0.77 eV and 7700,respec-tively,and the ideal factor of the SBD is decreased from 1.66 to 1.54 after an optimized annealing process.Our analysis results suggest that the improvement of the electrical properties of SBDs after annealing is mainly due to the reduction of the inter-face state density between Schottky contact metals and N-polarity GaN and the increase of barrier height for the electron emis-sion from the trap state at low reverse bias.
基金funded by the National Nature Science Foundation of China(32002196)。
文摘Background Global warming leading to heat stress(HS)is becoming a major challenge for broiler production.This study aimed to explore the protective effects of seaweed(Enteromorpha prolifera)polysaccharides(EPS)on the intestinal barrier function,microbial ecology,and performance of broilers under HS.A total of 144 yellow-feathered broilers(male,56 days old)with 682.59±7.38 g were randomly assigned to 3 groups:1)TN(thermal neutral zone,23.6±1.8℃),2)HS(heat stress,33.2±1.5℃ for 10 h/d),and 3)HSE(HS+0.1%EPS).Each group contained 6 replicates with 8 broilers per replicate.The study was conducted for 4 weeks;feed intake and body weights were measured at the end of weeks 2 and 4.At the end of the feeding trial,small intestine samples were collected for histomorphology,antioxidant,secretory immunoglobulin A(s Ig A)content,apoptosis,gene and protein expression analysis;cecal contents were also collected for microbiota analysis based on 16S r DNA sequencing.Results Dietary EPS promoted the average daily gain(ADG)of broilers during 3–4 weeks of HS(P<0.05).At the end of HS on broilers,the activity of total superoxide dismutase(T-SOD),glutathione S-transferase(GST),and the content of s Ig A in jejunum were improved by EPS supplementation(P<0.05).Besides,dietary EPS reduced the epithelial cell apoptosis of jejunum and ileum in heat-stressed broilers(P<0.05).Addition of EPS in HS group broilers'diet upregulated the relative m RNA expression of Occludin,ZO-1,γ-GCLc and IL-10 of the jejunum(P<0.05),whereas downregulated the relative m RNA expression of NF-κB p65,TNF-αand IL-1βof the jejunum(P<0.05).Dietary EPS increased the protein expression of Occludin and ZO-1,whereas it reduced the protein expression of NF-κB p65 and MLCK(P<0.01)and tended to decrease the protein expression of TNF-α(P=0.094)in heat-stressed broilers.Furthermore,the proportions of Bacteroides and Oscillospira among the three groups were positively associated with jejunal apoptosis and pro-inflammatory cytokine expression(P<0.05)and negatively correlated with jejunal Occludin level(P<0.05).However,the proportions of Lactobacillus,Barnesiella,Subdoligranulum,Megasphaera,Collinsella,and Blautia among the three groups were positively related to ADG(P<0.05).Conclusions EPS can be used as a feed additive in yellow-feathered broilers.It effectively improves growth performance and alleviates HS-induced intestinal injury by relieving inflammatory damage and improving the tight junction proteins expression.These beneficial effects may be related to inhibiting NF-κB/MLCK signaling pathway activation and regulation of cecal microbiota.
基金supported by JSPS KAKENHI(No.23K19087)“Dynamic Alliance for Open Innovation Bridging Human,Environment and Materials”from the Ministry of Education,Culture,Sports,Science and Technology o f Japan(MEXT).
文摘Rare-earth silicates are promising environmental barrier coatings(EBCs)that can protect SiC_(f)/Si C_(m)substrates in next-genera tion gas turbine blades.Notably,RE_(2)Si_(2)O_(7)(RE=Yb and Ho)shows potential as an EBC due to its coefficient of thermal expansion(CTE)compatible with substrates and high resistance to water vapor corrosion.The target operating temperature for next-generation tur bine blades is 1400°C.Corrosion is inevitable during adhesion to molten volcanic ash,and thus,understanding the corrosion behavior o the material is crucial to its reliability.This study investigates the high-temperature corrosion behavior of sintered RE_(2)Si_(2)O_(7)(RE=Yb and Ho).Samples were prepared using a solid-state reaction and hot-press method.They were then exposed to volcanic ash at 1400°C for 224,and 48 h.After 48 h of exposure,volcanic ash did not react with Yb_(2)Si_(2)O_(7)but penetrated its interior,causing damage.Meanwhile Ho_(2)Si_(2)O_(7)was partially dissolved in the molten volcanic ash,forming a reaction zone that prevented volcanic ash melts from penetrating the interior.With increasing heat treatment time,the reaction zone expanded,and the thickness of the acicular apatite grains increased The Ca:Si ratios in the residual volcanic ash were mostly unchanged for Yb_(2)Si_(2)O_(7)but decreased considerably over time for Ho_(2)Si_(2)O_(7).Th Ca in volcanic ash was consumed and formed apatite,indicating that RE^(3+)ions with large ionic radii(Ho>Yb)easily precipitated apatit from the volcanic ash.
基金supported by the National Natural Science Foundation of China(Grant No.42176015)the National Natural Science Foundation of China(Grant No.41605070)+3 种基金the National Key Research and Development Program(Grant No.2021YFC3101500)the Hunan Provincial Natural Science Outstanding Youth Fund(Grant No.2023JJ10053)the Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311022001)a project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.SML2021SP207)。
文摘This study investigates the impact of the salinity barrier layer(BL)on the upper ocean response to Super Typhoon Mangkhut(2018)in the western North Pacific.After the passage of Mangkhut,a noticeable increase(~0.6 psu)in sea surface salinity and a weak decrease(<1℃)in sea surface temperature(SST)were observed on the right side of the typhoon track.Mangkhut-induced SST change can be divided into the three stages,corresponding to the variations in BL thickness and SST before,during,and after the passage of Mangkhut.During the pre-typhoon stage,SST slightly warmed due to the entrainment of BL warm water,which suppressed the cooling induced by surface heat fluxes and horizontal advection.During the forced stage,SST cooling was controlled by entrainment,and the preexisting BL reduced the total cooling by 0.89℃ d-1,thus significantly weakening the overall SST cooling induced by Mangkhut.During the relaxation stage,the SST cooling was primarily caused by the entrainment.Our results indicate that a preexisting BL can limit typhoon-induced SST cooling by suppressing the entrainment of cold thermocline water,which contributed to Mangkhut becoming the strongest typhoon in 2018.
基金supported by the Natural Science Foundation of Sichuan Province(No.2022NSFSC0060)。
文摘Background Zinc glycine chelate(Zn-Gly)has anti-inflammation and growth-promoting properties;however,the mechanism of Zn-Gly contribution to gut barrier function in Cherry Valley ducks during intestinal inflammation is unknown.Three-hundred 1-day-old ducks were divided into 5 groups(6 replicates and 10 ducks per replicate)in a completely randomized design:the control and dextran sulfate sodium(DSS)groups were fed a corn-soybean meal basal diet,and experimental groups received supplements of 70,120 or 170 mg/kg Zn in form of Zn-Gly.The DSS and treatment groups were given 2 mL of 0.45 g/mL DSS daily during d 15–21,and the control group received normal saline.The experiment lasted 21 d.Results Compared with DSS group,70,120 and 170 mg/kg Zn significantly increased body weight(BW),villus height and the ratio of villus to crypt,and significantly decreased the crypt depth of jejunum at 21 d.The number of goblet cells in jejunal villi in the Zn-Gly group was significantly increased by periodic acid-Schiff staining.Compared with control,the content of intestinal permeability marker D-lactic acid(D-LA)and fluxes of fluorescein isothiocyanate(FITC-D)in plasma of DSS group significantly increased,and 170 mg/kg Zn supplementation significantly decreased the D-LA content and FITC-D fluxes.Compared with control,contents of plasma,jejunum endotoxin and jejunum pro-inflammatory factors IL-1β,IL-6 and TNF-αwere significantly increased in DSS group,and were significantly decreased by 170 mg/kg Zn supplementation.Dietary Zn significantly increased the contents of anti-inflammatory factors IL-10,IL-22 and sIgA and IgG in jejunum.Real-time PCR and Western blot results showed that 170 mg/kg Zn supplementation significantly increased mRNA expression levels of CLDN-1 and expression of OCLN protein in jejunum,and decreased gene and protein expression of CLDN-2 compared with DSS group.The 120 mg/kg Zn significantly promoted the expressions of IL-22 and IgA.Dietary Zn-Gly supplementation significantly decreased pro-inflammatory genes IL-8 and TNF-αexpression levels and TNF-αprotein expression in jejunum.Additionally,Zn significantly reduced the gene and protein expression of TLR4,MYD88 and NF-κB p65.Conclusions Zn-Gly improved duck BW and alleviated intestinal injury by regulating intestinal morphology,barrier function and gut inflammation-related signal pathways TLR4/MYD88/NF-κB p65.
基金This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2022R1I1A3070740).
文摘Background Deoxynivalenol(DON)is a mycotoxin that has received recognition worldwide because of its ability to cause growth delay,nutrient malabsorption,weight loss,emesis,and a reduction of feed intake in livestock.Since DON-contaminated feedstuff is absorbed in the gastrointestinal tract,we used chicken organoids to assess the DON-induced dysfunction of the small intestine.Results We established a culture system using chicken organoids and characterized the organoids at passages 1 and 10.We confirmed the mRNA expression levels of various cell markers in the organoids,such as KI67,leucine-rich repeat containing G protein-coupled receptor 5(Lgr5),mucin 2(MUC2),chromogranin A(CHGA),cytokeratin 19(CK19),lysozyme(LYZ),and microtubule-associated doublecortin-like kinase 1(DCLK1),and compared the results to those of the small intestine.Our results showed that the organoids displayed functional similarities in permeability compared to the small intestine.DON damaged the tight junctions of the organoids,which resulted in increased permeability.Conclusions Our organoid culture displayed topological,genetic,and functional similarities with the small intes-tine cells.Based on these similarities,we confirmed that DON causes small intestine dysfunction.Chicken organoids offer a practical model for the research of harmful substances.
基金The present study was supported by Sichuan Science and Technology Program(2021ZDZX0009)the Sichuan Pig Innovation Team of National Modern Agricultural Industry Technology System of China(scsztd-2021-08-11)the Sichuan Natural Science Foundation of China(2023NSFSC1141).
文摘Background Transmissible gastroenteritis virus(TGEV)is one of the main pathogens causing severe diarrhea of pig-lets.The pathogenesis of TGEV is closely related to intestinal inflammation.All-trans retinoic acid(ATRA)is the main active metabolite of vitamin A,which has immunomodulatory and anti-inflammatory properties.However,it is unclear whether ATRA can alleviate TGEV-induced intestinal inflammation and barrier dysfunction in piglets.This study aimed to investigate the effects of ATRA on growth performance,diarrhea,intestinal inflammation and intesti-nal barrier integrity of TGEV-challenged piglets.Methods In a 19-d study,32 weaned piglets were randomly divided into 4 treatments:Control group(basal diet),TGEV group(basal diet+TGEV challenge),TGEV+ATRA5 group(basal diet+5 mg/d ATRA+TGEV challenge)and TGEV+ATRA15 group(basal diet+15 mg/d ATRA+TGEV challenge).On d 14,piglets were orally administered TGEV or the sterile medium.Results Feeding piglets with 5 and 15 mg/d ATRA alleviated the growth inhibition and diarrhea induced by TGEV(P<0.05).Feeding piglets with 5 and 15 mg/d ATRA also inhibited the increase of serum diamine oxidase(DAO)activ-ity and the decrease of occludin and claudin-1 protein levels in jejunal mucosa induced by TGEV,and maintained intestinal barrier integrity(P<0.05).Meanwhile,5 mg/d ATRA feeding increased the sucrase activity and the expres-sions of nutrient transporter related genes(GLUT2 and SLC7A1)in jejunal mucosa of TGEV-challenged piglets(P<0.05).Furthermore,5 mg/d ATRA feeding attenuated TGEV-induced intestinal inflammatory response by inhibit-ing the release of interleukin(IL)-1β,IL-8 and tumor necrosis factor-α(TNF-α),and promoting the secretion of IL-10 and secretory immunoglobulin A(sIgA)(P<0.05).Feeding 5 mg/d ATRA also down-regulated the expressions of Toll-like receptors and RIG-I like receptors signaling pathway related genes(TLR3,TLR4,RIG-I,MyD88,TRIF and MAVS)and the phosphorylation level of nuclear factor-κB-p65(NF-κB p65),and up-regulated the inhibitor kappa B alpha(IκBα)protein level in jejunal mucosa of TGEV-challenged piglets(P<0.05).Conclusions ATRA alleviated TGEV-induced intestinal barrier damage by inhibiting inflammatory response,thus improving the growth performance and inhibiting diarrhea of piglets.The mechanism was associated with the inhibi-tion of NF-κB signaling pathway mediated by TLR3,TLR4 and RIG-I.