La2(Zr0.7Ce0.3)2O7 (LZ7C3) ceramic was synthesized by solid state reaction with La2O3, ZrO2 and CeO2 as starting materials. The synthesis kinetics, phase structure, mass loss and microstructure were studied by the...La2(Zr0.7Ce0.3)2O7 (LZ7C3) ceramic was synthesized by solid state reaction with La2O3, ZrO2 and CeO2 as starting materials. The synthesis kinetics, phase structure, mass loss and microstructure were studied by thermo gravimetric-different thermal analyzer (TG-DTA), X-ray difference (XRD) and scanning electron microscopy (SEM). The thermal conductivity and thermal expansion coefficient were measured by laser-flash method and pushing-rod method, respectively. XRD results showed that LZ7C3 was a mixture of La2Zr2O7 (LZ, pyro- chlore) and La2Ce2O7 (LC, fluorite). The lowest synthesis temperature and time of LZ7C3 were 1400 oC and 5 h. There were no peaks of La2O3 when the powder granularity was about 0.82 μm in the synthesis process. The atom ratio La:Zr:Ce of prepared LZ7C3 powder was very close to 10:7:3 which was the theory value of LZ7C3. The thermal conductivity of LZ7C3 decreased gradually with the temperature increased up to 1200 oC, and was located within 0.79 to 1.02 W/(m·K), which was almost 50% lower than that of LZ, whereas its thermal expansion coefficient was larger and the value was 11.6×10-6 K-1.展开更多
3C-SiC is a promising structural material for piezoresistive sensors used in high-temperature applications. For sensor development, the preparation of sensor materials and study of its electrical properties, such as r...3C-SiC is a promising structural material for piezoresistive sensors used in high-temperature applications. For sensor development, the preparation of sensor materials and study of its electrical properties, such as resistivity, barrier height of grain boundaries, and temperature coefficient of resistivity, are important in addition to structural properties and these have to be optimized. In the present work, 3C-SiC thin film with in situ doping of nitrogen is prepared through low- pressure chemical vapor deposition by using methyl trichloro silane, ammonia, and hydrogen as precursors. Electrical properties of deposited 3C-SiC thin films with varying nitrogen doping concentration through four probe technique are studied. Atomic force microscopy investigations are carried out to study the grain size on and average root-mean-squared roughness 3C-SiC thin films. A decrease in the degree of crystallinity is observed in nitrogen-doped 3C-SiC thin films. The sheet resistivity of nitrogen-doped 3C-SiC thin film is found to decrease with increase in temperature in the range from 303 to 823 K. The sheet resistivity, average temperature coefficient of resistance, and barrier height of the grain boundaries of film doped with 17 at.% of nitrogen are 0.14 cm, -1.0 x 10-n/K, and 0.01 eV, respectively. Comparing all the nitrogen-doped 3C-SiC thin films, the film doped with 17 at.% of nitrogen exhibits an improved structural and electrical properties and it can be used as sensing material for high-temperature applications.展开更多
基金Project supported by National Basic Research Program of China (973 Program, 613112)
文摘La2(Zr0.7Ce0.3)2O7 (LZ7C3) ceramic was synthesized by solid state reaction with La2O3, ZrO2 and CeO2 as starting materials. The synthesis kinetics, phase structure, mass loss and microstructure were studied by thermo gravimetric-different thermal analyzer (TG-DTA), X-ray difference (XRD) and scanning electron microscopy (SEM). The thermal conductivity and thermal expansion coefficient were measured by laser-flash method and pushing-rod method, respectively. XRD results showed that LZ7C3 was a mixture of La2Zr2O7 (LZ, pyro- chlore) and La2Ce2O7 (LC, fluorite). The lowest synthesis temperature and time of LZ7C3 were 1400 oC and 5 h. There were no peaks of La2O3 when the powder granularity was about 0.82 μm in the synthesis process. The atom ratio La:Zr:Ce of prepared LZ7C3 powder was very close to 10:7:3 which was the theory value of LZ7C3. The thermal conductivity of LZ7C3 decreased gradually with the temperature increased up to 1200 oC, and was located within 0.79 to 1.02 W/(m·K), which was almost 50% lower than that of LZ, whereas its thermal expansion coefficient was larger and the value was 11.6×10-6 K-1.
文摘3C-SiC is a promising structural material for piezoresistive sensors used in high-temperature applications. For sensor development, the preparation of sensor materials and study of its electrical properties, such as resistivity, barrier height of grain boundaries, and temperature coefficient of resistivity, are important in addition to structural properties and these have to be optimized. In the present work, 3C-SiC thin film with in situ doping of nitrogen is prepared through low- pressure chemical vapor deposition by using methyl trichloro silane, ammonia, and hydrogen as precursors. Electrical properties of deposited 3C-SiC thin films with varying nitrogen doping concentration through four probe technique are studied. Atomic force microscopy investigations are carried out to study the grain size on and average root-mean-squared roughness 3C-SiC thin films. A decrease in the degree of crystallinity is observed in nitrogen-doped 3C-SiC thin films. The sheet resistivity of nitrogen-doped 3C-SiC thin film is found to decrease with increase in temperature in the range from 303 to 823 K. The sheet resistivity, average temperature coefficient of resistance, and barrier height of the grain boundaries of film doped with 17 at.% of nitrogen are 0.14 cm, -1.0 x 10-n/K, and 0.01 eV, respectively. Comparing all the nitrogen-doped 3C-SiC thin films, the film doped with 17 at.% of nitrogen exhibits an improved structural and electrical properties and it can be used as sensing material for high-temperature applications.