GaN-based multiple quantum well light-emitting diodes (LEDs) with conventional and superlattice barriers have been investigated numerically. Simulation results demonstrate using InGaN/GaN superlattices as barriers c...GaN-based multiple quantum well light-emitting diodes (LEDs) with conventional and superlattice barriers have been investigated numerically. Simulation results demonstrate using InGaN/GaN superlattices as barriers can effectively enhance performances of the GaN-Based LEDs, mainly owing to the improvement of hole injection and transport among the MQW active region. Meanwhile, the improved electron capture decreases the electron leakage and alleviates the efficiency droop. The weak polarization field induced by the superlattice structure strengthens the intensity of the emission spectrum and leads to a blue-shift relative to the conventional one.展开更多
Residual stress evolution regularity in thermal barrier ceramic coatings (TBCs) under different cycles of thermal shock loading of 1 100℃ was investi- gated by the microscopic digital image correlation (DIC) and ...Residual stress evolution regularity in thermal barrier ceramic coatings (TBCs) under different cycles of thermal shock loading of 1 100℃ was investi- gated by the microscopic digital image correlation (DIC) and micro-Raman spec- troscopy, respectively. The obtained results showed that, as the cycle number of the thermal shock loading increases, the evolution of the residual stress under- goes three distinct stages: a sharp increase, a gradual change, and a reduction. The extension stress near the TBC surface is fast transformed to compressive one through just one thermal cycle. After different thermal shock cycles with peak temperature of 1 100℃, phase transformation in TBC does not happen, whereas the generation, development, evolution of the thermally grown oxide (TGO) layer and micro-cracks are the main reasons causing the evolution regularity of the residual stress.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.60877069)the Science and Technology Key Program of Guangdong Province,China(Grant Nos.2011A081301004 and 2012A080304006)
文摘GaN-based multiple quantum well light-emitting diodes (LEDs) with conventional and superlattice barriers have been investigated numerically. Simulation results demonstrate using InGaN/GaN superlattices as barriers can effectively enhance performances of the GaN-Based LEDs, mainly owing to the improvement of hole injection and transport among the MQW active region. Meanwhile, the improved electron capture decreases the electron leakage and alleviates the efficiency droop. The weak polarization field induced by the superlattice structure strengthens the intensity of the emission spectrum and leads to a blue-shift relative to the conventional one.
基金supported by the National Natural Science Foundation of China(91216301,11072033,11232008,and 11372037)the Program for New Century Excellent Talents in University(NCET-12-0036)the Natural Science Foundation of Beijing,China(3122027)
文摘Residual stress evolution regularity in thermal barrier ceramic coatings (TBCs) under different cycles of thermal shock loading of 1 100℃ was investi- gated by the microscopic digital image correlation (DIC) and micro-Raman spec- troscopy, respectively. The obtained results showed that, as the cycle number of the thermal shock loading increases, the evolution of the residual stress under- goes three distinct stages: a sharp increase, a gradual change, and a reduction. The extension stress near the TBC surface is fast transformed to compressive one through just one thermal cycle. After different thermal shock cycles with peak temperature of 1 100℃, phase transformation in TBC does not happen, whereas the generation, development, evolution of the thermally grown oxide (TGO) layer and micro-cracks are the main reasons causing the evolution regularity of the residual stress.