期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Unusual F_(3)stacking fault in magnesium
1
作者 Y.Yue S.L.Yang +1 位作者 C.C.Wu J.F.Nie 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2404-2428,共25页
An unusual F_(3)basal stacking fault resulting from twin-dislocation interaction in magnesium is observed in molecular dynamics simulation.The F_(3)fault is produced in the twin lattice from the interaction between a ... An unusual F_(3)basal stacking fault resulting from twin-dislocation interaction in magnesium is observed in molecular dynamics simulation.The F_(3)fault is produced in the twin lattice from the interaction between a migrating(1012)twin boundary and a partial dislocation of either a prismatic<c>edge,or a prismatic<c+a>mixed dislocation in the matrix.The condition is that the partial dislocation needs to have a negative sign and lie on a plane intersecting a compression site of the twin boundary.The F_(3)fault can also be generated when a positive basal<a>mixed dislocation in the twin lattice,with slip plane intersecting a compression site of the twin boundary,interacts with a basal-prismatic twinning disconnection.The F_(3)fault comprises two I_(1) faults that have the same character but are separated by two basal layers.It has one end connected to the twin boundary,and the other end bounded by a lattice defect with a Burgers vector identical to that of a 30°Shockley partial dislocation.The formation frequency of the F_(3)fault is higher at a lower shear stress(below∼400 MPa)and/or a lower temperature(100 K and 200 K).The F_(3)fault can decompose into a glissile 30°Shockley and a T_(2) fault at a temperature above∼400 K.The relationships between the F_(3)fault and other types of basal stacking faults such as I_(2),T_(2) or paired I_(1) faults that are separated by multiple basal layers are discussed. 展开更多
关键词 MAGNESIUM basal stacking fault F3 fault Twin-dislocation interactions
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部