Solid-state fermentation (SSF) holds tremendous potentials for the production of industrially significant enzymes. The present study describes the production of lipase by a novel rumen bacterium, Pseudomonas sp. strai...Solid-state fermentation (SSF) holds tremendous potentials for the production of industrially significant enzymes. The present study describes the production of lipase by a novel rumen bacterium, Pseudomonas sp. strain BUP6 on agro-industrial residues. Pseudomonas sp. strain BUP6 showed higher lipase production when grown in Basal salt medium (BSM) supplemented with oil cakes. Initially, five different oil cakes (obtained after extracting oil from coconut, groundnut, cotton seed, gingelly or soybean) were screened to find out the most suitable substrate-cum-inducer for the production of lipase. Among them, groundnut cake supported the maximum production of lipase (107.44 U/gds). Box-Behnken Design (BBD), followed by response surface methodology (RSM) was employed to optimize the culture parameters for maximizing the production of lipase. Using the software Minitab 14, four different parameters like temperature, pH, moisture content and incubation time were selected for the statistical optimization, which resulted in 0.7 fold increase (i.e., 180.75 U/gds) in production of lipase under the optimum culture conditions (temperature 28°C, pH 5.9, moisture 33% and incubation 2 d). Thus, this study signifies the importance of SSF for the production of industrially-significant lipase using agro-industrial residues as solid support.展开更多
Background: Tectono grandis (teak) is one of the most important tropical timber species occurring naturally in India. Appropriate growth models, based on advanced modeling techniques, are not available but are nece...Background: Tectono grandis (teak) is one of the most important tropical timber species occurring naturally in India. Appropriate growth models, based on advanced modeling techniques, are not available but are necessary for the successful management of teak stands in the country. Long-term forest planning requires mathematical models and the principles of Dynamical System Theory provide a solid foundation for these. Methods: The state-space approach makes it possible to accommodate disturbances and avarying environment. In this paper, an attempt has been made to develop a dynamic growth model based on the limited data, consisting of three annual measurements, collected from 22 teak sample plots in Karnataka, Southern India. Results: A biologically consistent whole-stand growth model has been presented which uses the state-space approach for modelling rates of change of three state-variables viz., dominant height, stems per hectare and stand basal area. Moreover, the model includes a stand volume equation as an output function to estimate this variable at any point in time. Transition functions were fitted separately and simultaneously. Moreover, a continuous autoregressive error structure is also included in the modelling process. For fitting volume equation, generalized method of moments was used to get efficient parameter estimates under heteroscedastic conditions. Conclusions: A simple model containing few free parameters performed well and is particularly well suited to situations where available data is scarce.展开更多
Background:The thermoregulatory ability of animals is strongly influenced by the temperature of their environment.Acclimation to cold requires a range of physiological and morphological adjustments.In this study,we te...Background:The thermoregulatory ability of animals is strongly influenced by the temperature of their environment.Acclimation to cold requires a range of physiological and morphological adjustments.In this study,we tested the hypothesis that a small passerine,the Red-billed Leiothrix(Leiothrix lutea),can maintain homeothermy in cold conditions by adjusting the physiology and biochemistry of its tissue and organs and return to its former physiological and biochemical state when moved to a warm temperature.Methods:Phenotypic variation in thermogenic activity of the Red-billed Leiothrixs(Leiothrix lutea)was investigated under warm(35℃),normal(25℃)or cold(15℃)ambient temperature conditions.Oxygen consumption was measured using an open-circuit respirometry system.Mitochondrial state-4 respiration and cytochrome-c oxidase(COX)activity in liver,kidney heart and pectoral muscle were measured with a Clark electrode.Results:Birds acclimated to an ambient temperature of 15℃ for 4 weeks significantly increased their basal metabolic rate(BMR)compared to a control group kept at 25℃.Birds acclimated to 35℃ decreased their BMR,gross energy intake(GEI)and digestible energy intake(DEI).Furthermore,birds acclimated to 15℃ increased state-4 respiration in their pectoral muscles and cytochrome-c oxidase(COX)activity in their liver and pectoral muscle,compared to the 25℃ control group.Birds acclimated to 35℃ also displayed lower state-4 respiration and COX activity in the liver,heart and pectoral muscles,compared to those kept at 25℃.There was a positive correlation between BMR and state-4 respiration,and between BMR and COX activity,in all of the above organs except the liver and heart.Conclusions:Our study illustrates that the morphological,physiological,and enzymatic changes are associated with temperature acclimation in the Red-billed Leiothrix,and supports the notion that the primary means by which small birds meet the energetic challenges of cold conditions is through metabolic adjustments.展开更多
Background:The capacity for thermogenesis is considered part of an animal's adaptive strategy for survival,and basal metabolic rate(BMR) is one of the fundamental physiological standards for assessing the energy c...Background:The capacity for thermogenesis is considered part of an animal's adaptive strategy for survival,and basal metabolic rate(BMR) is one of the fundamental physiological standards for assessing the energy cost of thermoregulation in endotherms.BMR has been shown to be a highly flexible phenotypic trait both between,and within,species,but the metabolic mechanisms involved in the regulation of BMR,which range from variation in organ mass to biochemical adjustments,remain unclear.In this study,we investigated the relationship between organ mass,biochemical markers of metabolic tissue activity,and thermogenesis,in three species of small passerines:wild Bramblings(Fringilla montifringilla),Little Buntings(Emberiza pusilla) and Eurasian Tree Sparrows(Passer montanus),caught in Wenzhou,southeastern China.Methods:Oxygen consumption was measured using an open-circuit respirometry system.Mitochondrial state-4 respiration and cytochrome c oxidase(COX) activity in liver and pectoral muscle were measured with a Clark electrode.Results:Our results show that Eurasian Tree Sparrows had significantly higher BMR,digestive organ mass,mitochondrial state-4 respiration capacity and COX activity in liver and muscle,than Bramblings and Little Buntings.Furthermore,interspecific differences in BMR were strongly correlated with those indigestive tract mass,state-4 respiration and COX activity.Conclusions:Our findings suggest that the digestive organ mass,state-4 respiration and COX activity play an important role in determining interspecific differences in BMR.展开更多
Background: Food is an important environmental factor that affects animals' energy metabolism and food shortage has significant effects on animals' behavior, physiology and biochemistry. However, to date few s...Background: Food is an important environmental factor that affects animals' energy metabolism and food shortage has significant effects on animals' behavior, physiology and biochemistry. However, to date few studies have focused on the thermogenesis and its effects on the body condition of birds. In this study, we examined the effects of food restriction on the body mass, basal metabolic rate(BMR) and body composition, and several physiological, biochemical and molecular markers potentially related to thermogenesis, in the Chinese Bulbul(Pycnonotus sinensis).Methods: Birds in the control group were provided with food ad libitum whereas those in the food restriction group were provided with one-half of the usual quantity of food for 12 days. Oxygen consumption was measured using an open-circuit respirometry system. Mitochondrial state 4 respiration and cytochrome c oxidase(COX) activity in the liver and pectoral muscle were measured with a Clark electrode. Avian uncoupling protein(avUCP) mRNA expression was determined in pectorals muscle with quantitative Real-time PCR.Results:Chinese Bulbuls in food restriction group decreased in body mass,BMR and internal organ(heart,kidneys,small intestine and total digestive tract)mass compared with the control group over the 12-day period of food restriction.Bulbuls in the food restriction group also had lower levels of state-4 respiration,COX activity in the liver and muscle,and mitochondrial avUCP gene expression in muscle compared to the control group.BMR was positively correlated with body mass,state 4 respiration in the liver and COX activity in the muscle.Conclusions:Our data indicate that Chinese Bulbuls not only sustain food shortage through simple passive mechanisms,such as reducing body and organ mass and energy expenditure,but also by reducing energetic metabolism in the liver and muscle.展开更多
Tension-type headache(TTH) is the most prevalent type of primary headache. Many studies have shown that the pathogenesis of primary headache is associated with fine structural or functional changes. However, these s...Tension-type headache(TTH) is the most prevalent type of primary headache. Many studies have shown that the pathogenesis of primary headache is associated with fine structural or functional changes. However, these studies were mainly based on migraine. The present study aimed to investigate whether TTH patients show functional disturbances compared with healthy subjects. We used restingstate functional magnetic resonance imaging(f MRI) and regional homogeneity(Re Ho) analysis to identify changes in the local synchronization of spontaneous activity in patients with TTH. Ten patients with TTH and 10 age-, gender-, and education-matched healthy controls participated in the study. After demographic and clinical characteristics were acquired, a 3.0-T MRI system was used to obtain restingstate f MRIs. Compared with healthy controls, the TTH group exhibited significantly lower Re Ho values in the bilateral caudate nucleus, the precuneus, the putamen, the left middle frontal gyrus, and the superior frontal gyrus. There was no correlation between mean Re Ho values in TTH patients and duration of TTH, number of attacks, duration of daily attacks, Visual Analogue Scale score, or Headache Impact Test-6 score. These results suggest that TTHpatients exhibit reduced synchronization of neuronal activity in multiple regions involved in the integration and processing of pain signals.展开更多
文摘Solid-state fermentation (SSF) holds tremendous potentials for the production of industrially significant enzymes. The present study describes the production of lipase by a novel rumen bacterium, Pseudomonas sp. strain BUP6 on agro-industrial residues. Pseudomonas sp. strain BUP6 showed higher lipase production when grown in Basal salt medium (BSM) supplemented with oil cakes. Initially, five different oil cakes (obtained after extracting oil from coconut, groundnut, cotton seed, gingelly or soybean) were screened to find out the most suitable substrate-cum-inducer for the production of lipase. Among them, groundnut cake supported the maximum production of lipase (107.44 U/gds). Box-Behnken Design (BBD), followed by response surface methodology (RSM) was employed to optimize the culture parameters for maximizing the production of lipase. Using the software Minitab 14, four different parameters like temperature, pH, moisture content and incubation time were selected for the statistical optimization, which resulted in 0.7 fold increase (i.e., 180.75 U/gds) in production of lipase under the optimum culture conditions (temperature 28°C, pH 5.9, moisture 33% and incubation 2 d). Thus, this study signifies the importance of SSF for the production of industrially-significant lipase using agro-industrial residues as solid support.
文摘Background: Tectono grandis (teak) is one of the most important tropical timber species occurring naturally in India. Appropriate growth models, based on advanced modeling techniques, are not available but are necessary for the successful management of teak stands in the country. Long-term forest planning requires mathematical models and the principles of Dynamical System Theory provide a solid foundation for these. Methods: The state-space approach makes it possible to accommodate disturbances and avarying environment. In this paper, an attempt has been made to develop a dynamic growth model based on the limited data, consisting of three annual measurements, collected from 22 teak sample plots in Karnataka, Southern India. Results: A biologically consistent whole-stand growth model has been presented which uses the state-space approach for modelling rates of change of three state-variables viz., dominant height, stems per hectare and stand basal area. Moreover, the model includes a stand volume equation as an output function to estimate this variable at any point in time. Transition functions were fitted separately and simultaneously. Moreover, a continuous autoregressive error structure is also included in the modelling process. For fitting volume equation, generalized method of moments was used to get efficient parameter estimates under heteroscedastic conditions. Conclusions: A simple model containing few free parameters performed well and is particularly well suited to situations where available data is scarce.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.31470472 and 31971420)the National Undergraduate “Innovation” Projectthe “Xinmiao” Project in Zhejiang Province
文摘Background:The thermoregulatory ability of animals is strongly influenced by the temperature of their environment.Acclimation to cold requires a range of physiological and morphological adjustments.In this study,we tested the hypothesis that a small passerine,the Red-billed Leiothrix(Leiothrix lutea),can maintain homeothermy in cold conditions by adjusting the physiology and biochemistry of its tissue and organs and return to its former physiological and biochemical state when moved to a warm temperature.Methods:Phenotypic variation in thermogenic activity of the Red-billed Leiothrixs(Leiothrix lutea)was investigated under warm(35℃),normal(25℃)or cold(15℃)ambient temperature conditions.Oxygen consumption was measured using an open-circuit respirometry system.Mitochondrial state-4 respiration and cytochrome-c oxidase(COX)activity in liver,kidney heart and pectoral muscle were measured with a Clark electrode.Results:Birds acclimated to an ambient temperature of 15℃ for 4 weeks significantly increased their basal metabolic rate(BMR)compared to a control group kept at 25℃.Birds acclimated to 35℃ decreased their BMR,gross energy intake(GEI)and digestible energy intake(DEI).Furthermore,birds acclimated to 15℃ increased state-4 respiration in their pectoral muscles and cytochrome-c oxidase(COX)activity in their liver and pectoral muscle,compared to the 25℃ control group.Birds acclimated to 35℃ also displayed lower state-4 respiration and COX activity in the liver,heart and pectoral muscles,compared to those kept at 25℃.There was a positive correlation between BMR and state-4 respiration,and between BMR and COX activity,in all of the above organs except the liver and heart.Conclusions:Our study illustrates that the morphological,physiological,and enzymatic changes are associated with temperature acclimation in the Red-billed Leiothrix,and supports the notion that the primary means by which small birds meet the energetic challenges of cold conditions is through metabolic adjustments.
基金financially supported by Grants from the National Natural Science Foundation of China (No. 31470472)the National Undergraduate "Innovation" Project and Zhejiang Province’s "Xinmiao" Project
文摘Background:The capacity for thermogenesis is considered part of an animal's adaptive strategy for survival,and basal metabolic rate(BMR) is one of the fundamental physiological standards for assessing the energy cost of thermoregulation in endotherms.BMR has been shown to be a highly flexible phenotypic trait both between,and within,species,but the metabolic mechanisms involved in the regulation of BMR,which range from variation in organ mass to biochemical adjustments,remain unclear.In this study,we investigated the relationship between organ mass,biochemical markers of metabolic tissue activity,and thermogenesis,in three species of small passerines:wild Bramblings(Fringilla montifringilla),Little Buntings(Emberiza pusilla) and Eurasian Tree Sparrows(Passer montanus),caught in Wenzhou,southeastern China.Methods:Oxygen consumption was measured using an open-circuit respirometry system.Mitochondrial state-4 respiration and cytochrome c oxidase(COX) activity in liver and pectoral muscle were measured with a Clark electrode.Results:Our results show that Eurasian Tree Sparrows had significantly higher BMR,digestive organ mass,mitochondrial state-4 respiration capacity and COX activity in liver and muscle,than Bramblings and Little Buntings.Furthermore,interspecific differences in BMR were strongly correlated with those indigestive tract mass,state-4 respiration and COX activity.Conclusions:Our findings suggest that the digestive organ mass,state-4 respiration and COX activity play an important role in determining interspecific differences in BMR.
基金financially supported by grants from the National Natural Science Foundation of China(No.31470472)the National Undergraduate “Innovation” Projectthe Zhejiang Province ‘Xinmiao’ Project
文摘Background: Food is an important environmental factor that affects animals' energy metabolism and food shortage has significant effects on animals' behavior, physiology and biochemistry. However, to date few studies have focused on the thermogenesis and its effects on the body condition of birds. In this study, we examined the effects of food restriction on the body mass, basal metabolic rate(BMR) and body composition, and several physiological, biochemical and molecular markers potentially related to thermogenesis, in the Chinese Bulbul(Pycnonotus sinensis).Methods: Birds in the control group were provided with food ad libitum whereas those in the food restriction group were provided with one-half of the usual quantity of food for 12 days. Oxygen consumption was measured using an open-circuit respirometry system. Mitochondrial state 4 respiration and cytochrome c oxidase(COX) activity in the liver and pectoral muscle were measured with a Clark electrode. Avian uncoupling protein(avUCP) mRNA expression was determined in pectorals muscle with quantitative Real-time PCR.Results:Chinese Bulbuls in food restriction group decreased in body mass,BMR and internal organ(heart,kidneys,small intestine and total digestive tract)mass compared with the control group over the 12-day period of food restriction.Bulbuls in the food restriction group also had lower levels of state-4 respiration,COX activity in the liver and muscle,and mitochondrial avUCP gene expression in muscle compared to the control group.BMR was positively correlated with body mass,state 4 respiration in the liver and COX activity in the muscle.Conclusions:Our data indicate that Chinese Bulbuls not only sustain food shortage through simple passive mechanisms,such as reducing body and organ mass and energy expenditure,but also by reducing energetic metabolism in the liver and muscle.
基金supported by the National Natural Science Foundation of China (81071140)
文摘Tension-type headache(TTH) is the most prevalent type of primary headache. Many studies have shown that the pathogenesis of primary headache is associated with fine structural or functional changes. However, these studies were mainly based on migraine. The present study aimed to investigate whether TTH patients show functional disturbances compared with healthy subjects. We used restingstate functional magnetic resonance imaging(f MRI) and regional homogeneity(Re Ho) analysis to identify changes in the local synchronization of spontaneous activity in patients with TTH. Ten patients with TTH and 10 age-, gender-, and education-matched healthy controls participated in the study. After demographic and clinical characteristics were acquired, a 3.0-T MRI system was used to obtain restingstate f MRIs. Compared with healthy controls, the TTH group exhibited significantly lower Re Ho values in the bilateral caudate nucleus, the precuneus, the putamen, the left middle frontal gyrus, and the superior frontal gyrus. There was no correlation between mean Re Ho values in TTH patients and duration of TTH, number of attacks, duration of daily attacks, Visual Analogue Scale score, or Headache Impact Test-6 score. These results suggest that TTHpatients exhibit reduced synchronization of neuronal activity in multiple regions involved in the integration and processing of pain signals.