This study endeavors to formulate a comprehensive methodology for establishing a Geological Knowledge Base(GKB)tailored to fracture-cavity reservoir outcrops within the North Tarim Basin.The acquisition of quantitativ...This study endeavors to formulate a comprehensive methodology for establishing a Geological Knowledge Base(GKB)tailored to fracture-cavity reservoir outcrops within the North Tarim Basin.The acquisition of quantitative geological parameters was accomplished through diverse means such as outcrop observations,thin section studies,unmanned aerial vehicle scanning,and high-resolution cameras.Subsequently,a three-dimensional digital outcrop model was generated,and the parameters were standardized.An assessment of traditional geological knowledge was conducted to delineate the knowledge framework,content,and system of the GKB.The basic parameter knowledge was extracted using multiscale fine characterization techniques,including core statistics,field observations,and microscopic thin section analysis.Key mechanism knowledge was identified by integrating trace elements from filling,isotope geochemical tests,and water-rock simulation experiments.Significant representational knowledge was then extracted by employing various methods such as multiple linear regression,neural network technology,and discriminant classification.Subsequently,an analogy study was performed on the karst fracture-cavity system(KFCS)in both outcrop and underground reservoir settings.The results underscored several key findings:(1)Utilization of a diverse range of techniques,including outcrop observations,core statistics,unmanned aerial vehicle scanning,high-resolution cameras,thin section analysis,and electron scanning imaging,enabled the acquisition and standardization of data.This facilitated effective management and integration of geological parameter data from multiple sources and scales.(2)The GKB for fracture-cavity reservoir outcrops,encompassing basic parameter knowledge,key mechanism knowledge,and significant representational knowledge,provides robust data support and systematic geological insights for the intricate and in-depth examination of the genetic mechanisms of fracture-cavity reservoirs.(3)The developmental characteristics of fracturecavities in karst outcrops offer effective,efficient,and accurate guidance for fracture-cavity research in underground karst reservoirs.The outlined construction method of the outcrop geological knowledge base is applicable to various fracture-cavity reservoirs in different layers and regions worldwide.展开更多
The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and ...The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and renewable nature.However,limitations such as brittleness,hydrophilicity,and thermal properties restrict its widespread application.To overcome these issues,covalent adaptable network was constructed to fabricate a fully bio-based starch plastic with multiple advantages via Schiff base reactions.This strategy endowed starch plastic with excellent thermal processability,as evidenced by a low glass transition temperature(T_(g)=20.15℃).Through introducing Priamine with long carbon chains,the starch plastic demonstrated superior flexibility(elongation at break=45.2%)and waterproof capability(water contact angle=109.2°).Besides,it possessed a good thermal stability and self-adaptability,as well as solvent resistance and chemical degradability.This work provides a promising method to fabricate fully bio-based plastics as alternative to petroleum-based plastics.展开更多
Curved-beams can be used to design modular multistable metamaterials(MMMs)with reprogrammable material properties,i.e.,programmable curved-beam periodic structure(PCBPS),which is promising for controlling the elastic ...Curved-beams can be used to design modular multistable metamaterials(MMMs)with reprogrammable material properties,i.e.,programmable curved-beam periodic structure(PCBPS),which is promising for controlling the elastic wave propagation.The PCBPS is theoretically equivalent to a spring-oscillator system to investigate the mechanism of bandgap,analyze the wave propagation mechanisms,and further form its geometrical and physical criteria for tuning the elastic wave propagation.With the equivalent model,we calculate the analytical solutions of the dispersion relations to demonstrate its adjustability,and investigate the wave propagation characteristics through the PCBPS.To validate the equivalent system,the finite element method(FEM)is employed.It is revealed that the bandgaps of the PCBPS can be turned on-and-off and shifted by varying its physical and geometrical characteristics.The findings are highly promising for advancing the practical application of periodic structures in wave insulation and propagation control.展开更多
Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effe...Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity.展开更多
Named Entity Recognition(NER)stands as a fundamental task within the field of biomedical text mining,aiming to extract specific types of entities such as genes,proteins,and diseases from complex biomedical texts and c...Named Entity Recognition(NER)stands as a fundamental task within the field of biomedical text mining,aiming to extract specific types of entities such as genes,proteins,and diseases from complex biomedical texts and categorize them into predefined entity types.This process can provide basic support for the automatic construction of knowledge bases.In contrast to general texts,biomedical texts frequently contain numerous nested entities and local dependencies among these entities,presenting significant challenges to prevailing NER models.To address these issues,we propose a novel Chinese nested biomedical NER model based on RoBERTa and Global Pointer(RoBGP).Our model initially utilizes the RoBERTa-wwm-ext-large pretrained language model to dynamically generate word-level initial vectors.It then incorporates a Bidirectional Long Short-Term Memory network for capturing bidirectional semantic information,effectively addressing the issue of long-distance dependencies.Furthermore,the Global Pointer model is employed to comprehensively recognize all nested entities in the text.We conduct extensive experiments on the Chinese medical dataset CMeEE and the results demonstrate the superior performance of RoBGP over several baseline models.This research confirms the effectiveness of RoBGP in Chinese biomedical NER,providing reliable technical support for biomedical information extraction and knowledge base construction.展开更多
The sampling of the training data is a bottleneck in the development of artificial intelligence(AI)models due to the processing of huge amounts of data or to the difficulty of access to the data in industrial practice...The sampling of the training data is a bottleneck in the development of artificial intelligence(AI)models due to the processing of huge amounts of data or to the difficulty of access to the data in industrial practices.Active learning(AL)approaches are useful in such a context since they maximize the performance of the trained model while minimizing the number of training samples.Such smart sampling methodologies iteratively sample the points that should be labeled and added to the training set based on their informativeness and pertinence.To judge the relevance of a data instance,query rules are defined.In this paper,we propose an AL methodology based on a physics-based query rule.Given some industrial objectives from the physical process where the AI model is implied in,the physics-based AL approach iteratively converges to the data instances fulfilling those objectives while sampling training points.Therefore,the trained surrogate model is accurate where the potentially interesting data instances from the industrial point of view are,while coarse everywhere else where the data instances are of no interest in the industrial context studied.展开更多
In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable progress.Accurate predictivemodels for thyroi...In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable progress.Accurate predictivemodels for thyroid cancer enhance early detection,improve resource allocation,and reduce overtreatment.However,the widespread adoption of these models in clinical practice demands predictive performance along with interpretability and transparency.This paper proposes a novel association-rule based feature-integratedmachine learning model which shows better classification and prediction accuracy than present state-of-the-artmodels.Our study also focuses on the application of SHapley Additive exPlanations(SHAP)values as a powerful tool for explaining thyroid cancer prediction models.In the proposed method,the association-rule based feature integration framework identifies frequently occurring attribute combinations in the dataset.The original dataset is used in trainingmachine learning models,and further used in generating SHAP values fromthesemodels.In the next phase,the dataset is integrated with the dominant feature sets identified through association-rule based analysis.This new integrated dataset is used in re-training the machine learning models.The new SHAP values generated from these models help in validating the contributions of feature sets in predicting malignancy.The conventional machine learning models lack interpretability,which can hinder their integration into clinical decision-making systems.In this study,the SHAP values are introduced along with association-rule based feature integration as a comprehensive framework for understanding the contributions of feature sets inmodelling the predictions.The study discusses the importance of reliable predictive models for early diagnosis of thyroid cancer,and a validation framework of explainability.The proposed model shows an accuracy of 93.48%.Performance metrics such as precision,recall,F1-score,and the area under the receiver operating characteristic(AUROC)are also higher than the baseline models.The results of the proposed model help us identify the dominant feature sets that impact thyroid cancer classification and prediction.The features{calcification}and{shape}consistently emerged as the top-ranked features associated with thyroid malignancy,in both association-rule based interestingnessmetric values and SHAPmethods.The paper highlights the potential of the rule-based integrated models with SHAP in bridging the gap between the machine learning predictions and the interpretability of this prediction which is required for real-world medical applications.展开更多
Based on the investigation data of 12 Haloxylon ammodendron plots in the south edge of Gurbantunggut Desert, Fuzzy distribution was introduced into the study of Haloxylon ammodendron base diameter structure fitting ac...Based on the investigation data of 12 Haloxylon ammodendron plots in the south edge of Gurbantunggut Desert, Fuzzy distribution was introduced into the study of Haloxylon ammodendron base diameter structure fitting according to the consistency between the characteristics of Fuzzy distribution function and the distribution series of cumulative percentage of stand base diameter, and the fitting precision and effect of Fuzzy distribution function were discussed. The root mean square error RMSE and determination coefficient R<sup>2</sup> values showed that Fuzzy-Γ<sub>1</sub>, Fuzzy-Γ<sub>2</sub>, Fuzzy-Γ<sub>3</sub>, Fuzzy-Γ<sub>4</sub> had good fitting performance, among which Fuzzy-Γ<sub>1</sub> had relatively high fitting precision, and its parameters were closely related to stand age and density, Fuzzy-Γ<sub>2</sub> distribution function was the second, and Fuzzy-Γ<sub>4</sub> distribution function had the worst fitting effect. By introducing a parameter c from the similarity of four distribution function formulas, a generalized Fuzzy distribution function Fuzzy-Γ<sub>5</sub> is obtained. This function shows the highest fitting accuracy. Most of the values of parameter c are near 1 or 2, which shows that the diameter distribution is mainly approximate to Fuzzy-Γ<sub>1</sub> and Fuzzy-Γ<sub>2</sub>.展开更多
Amplitudes have been found to be a function of incident angle and offset. Hence data required to test for amplitude variation with angle or offset needs to have its amplitudes for all offsets preserved and not stacked...Amplitudes have been found to be a function of incident angle and offset. Hence data required to test for amplitude variation with angle or offset needs to have its amplitudes for all offsets preserved and not stacked. Amplitude Variation with Offset (AVO)/Amplitude Variation with Angle (AVA) is necessary to account for information in the offset/angle parameter (mode converted S-wave and P-wave velocities). Since amplitudes are a function of the converted S- and P-waves, it is important to investigate the dependence of amplitudes on the elastic (P- and S-waves) parameters from the seismic data. By modelling these effects for different reservoir fluids via fluid substitution, various AVO geobody classes present along the well and in the entire seismic cube can be observed. AVO analysis was performed on one test well (Well_1) and 3D pre-stack angle gathers from the Tano Basin. The analysis involves creating a synthetic model to infer the effect of offset scaling techniques on amplitude responses in the Tano basin as compared to the effect of unscaled seismic data. The spectral balance process was performed to match the amplitude spectra of all angle stacks to that of the mid (26°) stack on the test lines. The process had an effect primarily on the far (34° - 40°) stacks. The frequency content of these stacks slightly increased to match that of the near and mid stacks. In offset scaling process, the root mean square (RMS) amplitude comparison between the synthetic and seismic suggests that the amplitude of the far traces should be reduced relative to the nears by up to 16%. However, the exact scaler values depend on the time window considered. This suggests that the amplitude scaling with offset delivered from seismic processing is only approximately correct and needs to be checked with well synthetics and adjusted accordingly prior to use for AVO studies. The AVO attribute volumes generated were better at resolving anomalies on spectrally balanced and offset scaled data than data delivered from conventional processing. A typical class II AVO anomaly is seen along the test well from the cross-plot analysis and AVO attribute cube which indicates an oil filled reservoir.展开更多
The reliability based optimization (RBO) issue of composite laminates trader fundamental frequency constraint is studied. Considering the tmcertainties of material properties, the frequency constraint reliability of...The reliability based optimization (RBO) issue of composite laminates trader fundamental frequency constraint is studied. Considering the tmcertainties of material properties, the frequency constraint reliability of the structure is evaluated by the combination of response surface method (RSM) and finite element method. An optimization algorithm is developed based on the mechanism of laminate frequency characteristics, to optimize the laminate in terms of the ply amount and orientation angles. Numerical examples of composite laminates and cylindrical shell illustrate the advantages of the present optimization algorithm on the efficiency and applicability respects. The optimal solutions of RBO are obviously different from the deterministic optimization results, and the necessity of considering material property uncertainties in the composite structural frequency constraint optimization is revealed.展开更多
A post-synthetic modification strategy has been used to prepare three solid base catalysts, including Er(btc)(ED)075(H2O)0.25 (2, btc = 1,3,5-benzenetricarboxylates, ED = 1,2-ethanediamine), Er(btc)(PP)0.5...A post-synthetic modification strategy has been used to prepare three solid base catalysts, including Er(btc)(ED)075(H2O)0.25 (2, btc = 1,3,5-benzenetricarboxylates, ED = 1,2-ethanediamine), Er(btc)(PP)0.55(H20)0.45 (3, PP = piperazine), and Er(btc)(DABCO)0.15(H2O)0.85 (4, DABCO = 1,4- diazabicyclo[2.2.2]octane), by grafting three different diamines onto the coordinatively unsaturated Er(III) ions into the channels of the desolvated lanthanide metal-organic framework (Er(otc)). The resulting metal-organic frameworks were characterized by elemental analysis, thermogravimetric analysis, powder X-ray diffraction, and N2 adsorption. Based on its higher loading ratio of the diamine, as well as its greater stability and porosity, catalyst 2 exhibited higher catalytic activity and reusability than catalysts 3 and 4- for the Knoevenagel condensation reaction. The catalytic mechanism of 2 has also been investigated using size-selective catalysis tests.展开更多
[Objective] This study aimed to determine the effects of supplemental irrigation on yield and nitrogen uptake in winter wheat. [Method] Three supplemental irrigation levels were set based on the target soil contents ...[Objective] This study aimed to determine the effects of supplemental irrigation on yield and nitrogen uptake in winter wheat. [Method] Three supplemental irrigation levels were set based on the target soil contents of 60%, 70% and 80%) at jointing stage of wheat. Moreover, three nitrogen levels (0, 195 and 255 kg/hm^2) were designed. The experimental plots were arranged fol owing a split-plot design. Zhoumai 18 was selected as the experimental material. [Result] Supplemental irrigation and nitrogen application in combination had significant or extremely significant effects on yield, yield components and nitrogen uptake in winter wheat. The interaction between irrigation and nitrogen fertilization had significant or extremely significant influence on the number of ears, number of grains per ear, 1 000-grain weight, grain yield and nitrogen accumulation in winter wheat. Under different combinations of supplemental irrigation and nitrogen application, the maximum yield of winter wheat was obtained at W2 N195, while the minimum at W1 N255. [Conclusion] With the increase of irrigation, negative effect of nitrogen on number of ears, number of grains per ear, 1 000-grain weight, grain yield and nitrogen accumulation decrease under lower nitrogen application rate.展开更多
Flow based Erosion e corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosionecor...Flow based Erosion e corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosionecorrosion damage in the above components, iron based amorphous coatings are considered to be more effective to combat erosionecorrosion problems. High velocity oxy-fuel(HVOF)spray process is considered to be a better process to coat the iron based amorphous powders. In this investigation, iron based amorphous metallic coating was developed on 316 stainless steel substrate using HVOF spray technique. Empirical relationships were developed to predict the porosity and micro hardness of iron based amorphous coating incorporating HVOF spray parameters such as oxygen flow rate, fuel flow rate, powder feed rate, carrier gas flow rate, and spray distance. Response surface methodology(RSM) was used to identify the optimal HVOF spray parameters to attain coating with minimum porosity and maximum hardness.展开更多
A rotating pre-twisted and inclined cantilever beam model (RPICBM) with the flapwise-chordwise-axial-torsional coupling is established with the Hamilton principle and the finite element (FE) method. The effectiveness ...A rotating pre-twisted and inclined cantilever beam model (RPICBM) with the flapwise-chordwise-axial-torsional coupling is established with the Hamilton principle and the finite element (FE) method. The effectiveness of the model is verified via comparisons with the literatures and the FE models in ANSYS. The effects of the setting and pre-twisted angles on the dynamic responses of the RPICBM are analyzed. The results show that:(i) the increase in the setting or pre-twisted angle results in the increases in the first-order flapwise and torsional frequencies while the decrease in the first-order chordwise frequency under rotating conditions;(ii) a positive/negative setting angle leads to a positive/negative constant component, while a positive/negative pre-twisted angle leads to a negative/positive constant component;(iii) when the rotation speed is non-zero, the pre-twisted angle or non-zero setting angle will result in the coupled flapwise-chordwiseaxial- torsional vibration of the RPICBM under axial base excitation.展开更多
The traffic explosion and the rising of diverse requirements lead to many challenges for traditional mobile network architecture on flexibility, scalability, and deployability. To meet new requirements in the 5 G era,...The traffic explosion and the rising of diverse requirements lead to many challenges for traditional mobile network architecture on flexibility, scalability, and deployability. To meet new requirements in the 5 G era, service based architecture is introduced into mobile networks. The monolithic network elements(e.g., MME, PGW, etc.) are split into smaller network functions to provide customized services. However, the management and deployment of network functions in service based 5 G core network are still big challenges. In this paper, we propose a novel management architecture for 5 G service based core network based on NFV and SDN. Combined with SDN, NFV and edge computing, the proposed framework can provide distributed and on-demand deployment of network functions, service guaranteed network slicing, flexible orchestration of network functions and optimal workload allocation. Simulations are conducted to show that the proposed framework and algorithm are effective in terms of reducing network operating cost.展开更多
Korean larch(Larix olgensis)is one of the main tree species for aff orestation and timber production in northeast China.However,its timber quality and growth ability are largely infl uenced by crown size,structure and...Korean larch(Larix olgensis)is one of the main tree species for aff orestation and timber production in northeast China.However,its timber quality and growth ability are largely infl uenced by crown size,structure and shape.The majority of crown models are static models based on tree size and stand characteristics from temporary sample plots,but crown dynamic models has seldom been constructed.Therefore,this study aimed to develop height to crown base(HCB)and crown length(CL)dynamic models using the branch mortality technique for a Korean larch plantation.The nonlinear mixed-eff ects model with random eff ects,variance functions and correlation structures,was used to build HCB and CL dynamic models.The data were obtained from 95 sample trees of 19 plots in Meng JiaGang forest farm in Northeast China.The results showed that HCB progressively increases as tree age,tree height growth(HT growth)and diameter at breast height growth(DBH growth).The CL was increased with tree age in 20 years ago,and subsequently stabilized.HT growth,DBH growth stand basal area(BAS)and crown competition factor(CCF)signifi cantly infl uenced HCB and CL.The HCB was positively correlated with BAS,HT growth and DBH growth,but negatively correlated with CCF.The CL was positively correlated with BAS and CCF,but negatively correlated with DBH growth.Model fi tting and validation confi rmed that the mixed-eff ects model considering the stand and tree level random eff ects was accurate and reliable for predicting the HCB and CL dynamics.However,the models involving adding variance functions and time series correlation structure could not completely remove heterogeneity and autocorrelation,and the fi tting precision of the models was reduced.Therefore,from the point of view of application,we should take care to avoid setting up over-complex models.The HCB and CL dynamic models in our study may also be incorporated into stand growth and yield model systems in China.展开更多
A Mobile Offshore Base (MOB) is a multi-purpose logistics base, which can be stationed in coastal or international waters. In the conceptual design of the MOB, attention should he paid to the dynamic responses of the ...A Mobile Offshore Base (MOB) is a multi-purpose logistics base, which can be stationed in coastal or international waters. In the conceptual design of the MOB, attention should he paid to the dynamic responses of the inter-module connectors because tremendous loads occur in the connectors. In this paper, a study on dynamic responses of the MOB connectors is carried out by use of the Rigid Module Flexible Connector (RMFC) model which assumes that the module stiffness is significantly larger than that of the connector. In the analysis, the connector is modeled as a linear spring, which restricts relative translations but allows for relative rotations of modules. The 3-D source distribution method is adopted to determine the hydrodynamic forces of the modules, and the hydrodynamic interaction between modules is taken into account. The module motions and connector loads for 12 connector stiffness cases in regular and irregular waves are calculated with the multi-rigid-body motion equations. And the calculated results are compared with those from relative references. It is shown that the results obtained by different methods are in good agreement.展开更多
Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend an...Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend and short-term fluctuation of the dam seepage behavior, two monitoring models were developed, one for the base flow effect and one for daily variation of dam seepage elements. In the first model, to avoid the influence of the time lag effect on the evaluation of seepage variation with the time effect component of seepage elements, the base values of the seepage element and the reservoir water level were extracted using the wavelet multi-resolution analysis method, and the time effect component was separated by the established base flow effect monitoring model. For the development of the daily variation monitoring model for dam seepage elements, all the previous factors, of which the measured time series prior to the dam seepage element monitoring time may have certain influence on the monitored results, were considered. Those factors that were positively correlated with the analyzed seepage element were initially considered to be the support vector machine(SVM) model input factors, and then the SVM kernel function-based sensitivity analysis was performed to optimize the input factor set and establish the optimized daily variation SVM model. The efficiency and rationality of the two models were verified by case studies of the water level of two piezometric tubes buried under the slope of a concrete gravity dam.Sensitivity analysis of the optimized SVM model shows that the influences of the daily variation of the upstream reservoir water level and rainfall on the daily variation of piezometric tube water level are processes subject to normal distribution.展开更多
QNET-CFD is a thematic network on quality and trust for the industrial applications of Computational Fluid Dynamics (CFD), developed under the European Union R&D program. The main objectives of QNET-CFD were to col...QNET-CFD is a thematic network on quality and trust for the industrial applications of Computational Fluid Dynamics (CFD), developed under the European Union R&D program. The main objectives of QNET-CFD were to collect CFD and experimental data in a systematic and quality controlled way and to set the basis for a consistent Knowledge Base in support of CFD guidance and validation. The QNET-CFD activity was organized around six Thematic Areas (TAs) covering the following industry sectors: external aerodynamics; combustion & heat transfer; chemical process, thermal hydraulics and nuclear safety; civil construction & HVAC; environment; turbomachinery internal flows. The main outcome of the QNET-CFD actions is the Knowledge Base (KB) with contains in a user oriented interface, extensive experimental and CFD data for a large number of test cases subdivided into 53 Application Challenges (AC) and 43 Underlying Flow Regimes (UFR). The KB contains, in addition to state-of-the-art reviews for each of the six thematic areas, Best Practice Advice (BPA) in the use of CFD for most of AC. This is considered as a significant contribution form the QNET-CFD activities and it is expected that the level of the thrust and quality in CFD will hereby be improved.展开更多
基金supported by the Major Scientific and Technological Projects of CNPC under grant ZD2019-183-006the National Science and Technology Major Project of China (2016ZX05014002-006)the National Natural Science Foundation of China (42072234,42272180)。
文摘This study endeavors to formulate a comprehensive methodology for establishing a Geological Knowledge Base(GKB)tailored to fracture-cavity reservoir outcrops within the North Tarim Basin.The acquisition of quantitative geological parameters was accomplished through diverse means such as outcrop observations,thin section studies,unmanned aerial vehicle scanning,and high-resolution cameras.Subsequently,a three-dimensional digital outcrop model was generated,and the parameters were standardized.An assessment of traditional geological knowledge was conducted to delineate the knowledge framework,content,and system of the GKB.The basic parameter knowledge was extracted using multiscale fine characterization techniques,including core statistics,field observations,and microscopic thin section analysis.Key mechanism knowledge was identified by integrating trace elements from filling,isotope geochemical tests,and water-rock simulation experiments.Significant representational knowledge was then extracted by employing various methods such as multiple linear regression,neural network technology,and discriminant classification.Subsequently,an analogy study was performed on the karst fracture-cavity system(KFCS)in both outcrop and underground reservoir settings.The results underscored several key findings:(1)Utilization of a diverse range of techniques,including outcrop observations,core statistics,unmanned aerial vehicle scanning,high-resolution cameras,thin section analysis,and electron scanning imaging,enabled the acquisition and standardization of data.This facilitated effective management and integration of geological parameter data from multiple sources and scales.(2)The GKB for fracture-cavity reservoir outcrops,encompassing basic parameter knowledge,key mechanism knowledge,and significant representational knowledge,provides robust data support and systematic geological insights for the intricate and in-depth examination of the genetic mechanisms of fracture-cavity reservoirs.(3)The developmental characteristics of fracturecavities in karst outcrops offer effective,efficient,and accurate guidance for fracture-cavity research in underground karst reservoirs.The outlined construction method of the outcrop geological knowledge base is applicable to various fracture-cavity reservoirs in different layers and regions worldwide.
基金supported by the National Natural Science Foundation of China(U23A6005 and 32171721)State Key Laboratory of Pulp and Paper Engineering(202305,2023ZD01,2023C02)+1 种基金Guangdong Province Basic and Application Basic Research Fund(2023B1515040013)the Fundamental Research Funds for the Central Universities(2023ZYGXZR045).
文摘The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and renewable nature.However,limitations such as brittleness,hydrophilicity,and thermal properties restrict its widespread application.To overcome these issues,covalent adaptable network was constructed to fabricate a fully bio-based starch plastic with multiple advantages via Schiff base reactions.This strategy endowed starch plastic with excellent thermal processability,as evidenced by a low glass transition temperature(T_(g)=20.15℃).Through introducing Priamine with long carbon chains,the starch plastic demonstrated superior flexibility(elongation at break=45.2%)and waterproof capability(water contact angle=109.2°).Besides,it possessed a good thermal stability and self-adaptability,as well as solvent resistance and chemical degradability.This work provides a promising method to fabricate fully bio-based plastics as alternative to petroleum-based plastics.
基金supported by the National Natural Science Foundation of China(Nos.12172012 and 11802005)。
文摘Curved-beams can be used to design modular multistable metamaterials(MMMs)with reprogrammable material properties,i.e.,programmable curved-beam periodic structure(PCBPS),which is promising for controlling the elastic wave propagation.The PCBPS is theoretically equivalent to a spring-oscillator system to investigate the mechanism of bandgap,analyze the wave propagation mechanisms,and further form its geometrical and physical criteria for tuning the elastic wave propagation.With the equivalent model,we calculate the analytical solutions of the dispersion relations to demonstrate its adjustability,and investigate the wave propagation characteristics through the PCBPS.To validate the equivalent system,the finite element method(FEM)is employed.It is revealed that the bandgaps of the PCBPS can be turned on-and-off and shifted by varying its physical and geometrical characteristics.The findings are highly promising for advancing the practical application of periodic structures in wave insulation and propagation control.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2020R1A2C1A01011131)the Energy Cloud R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(2019M3F2A1073164).
文摘Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity.
基金supported by the Outstanding Youth Team Project of Central Universities(QNTD202308)the Ant Group through CCF-Ant Research Fund(CCF-AFSG 769498 RF20220214).
文摘Named Entity Recognition(NER)stands as a fundamental task within the field of biomedical text mining,aiming to extract specific types of entities such as genes,proteins,and diseases from complex biomedical texts and categorize them into predefined entity types.This process can provide basic support for the automatic construction of knowledge bases.In contrast to general texts,biomedical texts frequently contain numerous nested entities and local dependencies among these entities,presenting significant challenges to prevailing NER models.To address these issues,we propose a novel Chinese nested biomedical NER model based on RoBERTa and Global Pointer(RoBGP).Our model initially utilizes the RoBERTa-wwm-ext-large pretrained language model to dynamically generate word-level initial vectors.It then incorporates a Bidirectional Long Short-Term Memory network for capturing bidirectional semantic information,effectively addressing the issue of long-distance dependencies.Furthermore,the Global Pointer model is employed to comprehensively recognize all nested entities in the text.We conduct extensive experiments on the Chinese medical dataset CMeEE and the results demonstrate the superior performance of RoBGP over several baseline models.This research confirms the effectiveness of RoBGP in Chinese biomedical NER,providing reliable technical support for biomedical information extraction and knowledge base construction.
文摘The sampling of the training data is a bottleneck in the development of artificial intelligence(AI)models due to the processing of huge amounts of data or to the difficulty of access to the data in industrial practices.Active learning(AL)approaches are useful in such a context since they maximize the performance of the trained model while minimizing the number of training samples.Such smart sampling methodologies iteratively sample the points that should be labeled and added to the training set based on their informativeness and pertinence.To judge the relevance of a data instance,query rules are defined.In this paper,we propose an AL methodology based on a physics-based query rule.Given some industrial objectives from the physical process where the AI model is implied in,the physics-based AL approach iteratively converges to the data instances fulfilling those objectives while sampling training points.Therefore,the trained surrogate model is accurate where the potentially interesting data instances from the industrial point of view are,while coarse everywhere else where the data instances are of no interest in the industrial context studied.
文摘In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable progress.Accurate predictivemodels for thyroid cancer enhance early detection,improve resource allocation,and reduce overtreatment.However,the widespread adoption of these models in clinical practice demands predictive performance along with interpretability and transparency.This paper proposes a novel association-rule based feature-integratedmachine learning model which shows better classification and prediction accuracy than present state-of-the-artmodels.Our study also focuses on the application of SHapley Additive exPlanations(SHAP)values as a powerful tool for explaining thyroid cancer prediction models.In the proposed method,the association-rule based feature integration framework identifies frequently occurring attribute combinations in the dataset.The original dataset is used in trainingmachine learning models,and further used in generating SHAP values fromthesemodels.In the next phase,the dataset is integrated with the dominant feature sets identified through association-rule based analysis.This new integrated dataset is used in re-training the machine learning models.The new SHAP values generated from these models help in validating the contributions of feature sets in predicting malignancy.The conventional machine learning models lack interpretability,which can hinder their integration into clinical decision-making systems.In this study,the SHAP values are introduced along with association-rule based feature integration as a comprehensive framework for understanding the contributions of feature sets inmodelling the predictions.The study discusses the importance of reliable predictive models for early diagnosis of thyroid cancer,and a validation framework of explainability.The proposed model shows an accuracy of 93.48%.Performance metrics such as precision,recall,F1-score,and the area under the receiver operating characteristic(AUROC)are also higher than the baseline models.The results of the proposed model help us identify the dominant feature sets that impact thyroid cancer classification and prediction.The features{calcification}and{shape}consistently emerged as the top-ranked features associated with thyroid malignancy,in both association-rule based interestingnessmetric values and SHAPmethods.The paper highlights the potential of the rule-based integrated models with SHAP in bridging the gap between the machine learning predictions and the interpretability of this prediction which is required for real-world medical applications.
文摘Based on the investigation data of 12 Haloxylon ammodendron plots in the south edge of Gurbantunggut Desert, Fuzzy distribution was introduced into the study of Haloxylon ammodendron base diameter structure fitting according to the consistency between the characteristics of Fuzzy distribution function and the distribution series of cumulative percentage of stand base diameter, and the fitting precision and effect of Fuzzy distribution function were discussed. The root mean square error RMSE and determination coefficient R<sup>2</sup> values showed that Fuzzy-Γ<sub>1</sub>, Fuzzy-Γ<sub>2</sub>, Fuzzy-Γ<sub>3</sub>, Fuzzy-Γ<sub>4</sub> had good fitting performance, among which Fuzzy-Γ<sub>1</sub> had relatively high fitting precision, and its parameters were closely related to stand age and density, Fuzzy-Γ<sub>2</sub> distribution function was the second, and Fuzzy-Γ<sub>4</sub> distribution function had the worst fitting effect. By introducing a parameter c from the similarity of four distribution function formulas, a generalized Fuzzy distribution function Fuzzy-Γ<sub>5</sub> is obtained. This function shows the highest fitting accuracy. Most of the values of parameter c are near 1 or 2, which shows that the diameter distribution is mainly approximate to Fuzzy-Γ<sub>1</sub> and Fuzzy-Γ<sub>2</sub>.
文摘Amplitudes have been found to be a function of incident angle and offset. Hence data required to test for amplitude variation with angle or offset needs to have its amplitudes for all offsets preserved and not stacked. Amplitude Variation with Offset (AVO)/Amplitude Variation with Angle (AVA) is necessary to account for information in the offset/angle parameter (mode converted S-wave and P-wave velocities). Since amplitudes are a function of the converted S- and P-waves, it is important to investigate the dependence of amplitudes on the elastic (P- and S-waves) parameters from the seismic data. By modelling these effects for different reservoir fluids via fluid substitution, various AVO geobody classes present along the well and in the entire seismic cube can be observed. AVO analysis was performed on one test well (Well_1) and 3D pre-stack angle gathers from the Tano Basin. The analysis involves creating a synthetic model to infer the effect of offset scaling techniques on amplitude responses in the Tano basin as compared to the effect of unscaled seismic data. The spectral balance process was performed to match the amplitude spectra of all angle stacks to that of the mid (26°) stack on the test lines. The process had an effect primarily on the far (34° - 40°) stacks. The frequency content of these stacks slightly increased to match that of the near and mid stacks. In offset scaling process, the root mean square (RMS) amplitude comparison between the synthetic and seismic suggests that the amplitude of the far traces should be reduced relative to the nears by up to 16%. However, the exact scaler values depend on the time window considered. This suggests that the amplitude scaling with offset delivered from seismic processing is only approximately correct and needs to be checked with well synthetics and adjusted accordingly prior to use for AVO studies. The AVO attribute volumes generated were better at resolving anomalies on spectrally balanced and offset scaled data than data delivered from conventional processing. A typical class II AVO anomaly is seen along the test well from the cross-plot analysis and AVO attribute cube which indicates an oil filled reservoir.
基金National Natural Science Foundation of China (51412060104HK0123)
文摘The reliability based optimization (RBO) issue of composite laminates trader fundamental frequency constraint is studied. Considering the tmcertainties of material properties, the frequency constraint reliability of the structure is evaluated by the combination of response surface method (RSM) and finite element method. An optimization algorithm is developed based on the mechanism of laminate frequency characteristics, to optimize the laminate in terms of the ply amount and orientation angles. Numerical examples of composite laminates and cylindrical shell illustrate the advantages of the present optimization algorithm on the efficiency and applicability respects. The optimal solutions of RBO are obviously different from the deterministic optimization results, and the necessity of considering material property uncertainties in the composite structural frequency constraint optimization is revealed.
基金supported by the National Natural Science Foundation of China(21372087)~~
文摘A post-synthetic modification strategy has been used to prepare three solid base catalysts, including Er(btc)(ED)075(H2O)0.25 (2, btc = 1,3,5-benzenetricarboxylates, ED = 1,2-ethanediamine), Er(btc)(PP)0.55(H20)0.45 (3, PP = piperazine), and Er(btc)(DABCO)0.15(H2O)0.85 (4, DABCO = 1,4- diazabicyclo[2.2.2]octane), by grafting three different diamines onto the coordinatively unsaturated Er(III) ions into the channels of the desolvated lanthanide metal-organic framework (Er(otc)). The resulting metal-organic frameworks were characterized by elemental analysis, thermogravimetric analysis, powder X-ray diffraction, and N2 adsorption. Based on its higher loading ratio of the diamine, as well as its greater stability and porosity, catalyst 2 exhibited higher catalytic activity and reusability than catalysts 3 and 4- for the Knoevenagel condensation reaction. The catalytic mechanism of 2 has also been investigated using size-selective catalysis tests.
基金Supported by the Water-and Fertilizer-saving Technology Demonstration for Wheat and Maize in Central Henan Province(2013BAD07B07-2)National Key Technology Research and Development Program during the 12th Five-year Plan Period(2012BAD04B07-2)~~
文摘[Objective] This study aimed to determine the effects of supplemental irrigation on yield and nitrogen uptake in winter wheat. [Method] Three supplemental irrigation levels were set based on the target soil contents of 60%, 70% and 80%) at jointing stage of wheat. Moreover, three nitrogen levels (0, 195 and 255 kg/hm^2) were designed. The experimental plots were arranged fol owing a split-plot design. Zhoumai 18 was selected as the experimental material. [Result] Supplemental irrigation and nitrogen application in combination had significant or extremely significant effects on yield, yield components and nitrogen uptake in winter wheat. The interaction between irrigation and nitrogen fertilization had significant or extremely significant influence on the number of ears, number of grains per ear, 1 000-grain weight, grain yield and nitrogen accumulation in winter wheat. Under different combinations of supplemental irrigation and nitrogen application, the maximum yield of winter wheat was obtained at W2 N195, while the minimum at W1 N255. [Conclusion] With the increase of irrigation, negative effect of nitrogen on number of ears, number of grains per ear, 1 000-grain weight, grain yield and nitrogen accumulation decrease under lower nitrogen application rate.
文摘Flow based Erosion e corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosionecorrosion damage in the above components, iron based amorphous coatings are considered to be more effective to combat erosionecorrosion problems. High velocity oxy-fuel(HVOF)spray process is considered to be a better process to coat the iron based amorphous powders. In this investigation, iron based amorphous metallic coating was developed on 316 stainless steel substrate using HVOF spray technique. Empirical relationships were developed to predict the porosity and micro hardness of iron based amorphous coating incorporating HVOF spray parameters such as oxygen flow rate, fuel flow rate, powder feed rate, carrier gas flow rate, and spray distance. Response surface methodology(RSM) was used to identify the optimal HVOF spray parameters to attain coating with minimum porosity and maximum hardness.
基金Project supported by the National Natural Science Foundation of China(No.11772089)the Fundamental Research Funds for the Central Universities of China(Nos.N170308028 and N170306004)+1 种基金the Program for the Innovative Talents of Higher Learning Institutions of Liaoning of China(No.LR2017035)the Liaoning Revitalization Talents Program of China(No.XLYC1807008)
文摘A rotating pre-twisted and inclined cantilever beam model (RPICBM) with the flapwise-chordwise-axial-torsional coupling is established with the Hamilton principle and the finite element (FE) method. The effectiveness of the model is verified via comparisons with the literatures and the FE models in ANSYS. The effects of the setting and pre-twisted angles on the dynamic responses of the RPICBM are analyzed. The results show that:(i) the increase in the setting or pre-twisted angle results in the increases in the first-order flapwise and torsional frequencies while the decrease in the first-order chordwise frequency under rotating conditions;(ii) a positive/negative setting angle leads to a positive/negative constant component, while a positive/negative pre-twisted angle leads to a negative/positive constant component;(iii) when the rotation speed is non-zero, the pre-twisted angle or non-zero setting angle will result in the coupled flapwise-chordwiseaxial- torsional vibration of the RPICBM under axial base excitation.
基金supported by China Ministry of Education-CMCC Research Fund Project No.MCM20160104National Science and Technology Major Project No.No.2018ZX03001016+1 种基金Beijing Municipal Science and technology Commission Research Fund Project No.Z171100005217001Fundamental Research Funds for Central Universities NO.2018RC06
文摘The traffic explosion and the rising of diverse requirements lead to many challenges for traditional mobile network architecture on flexibility, scalability, and deployability. To meet new requirements in the 5 G era, service based architecture is introduced into mobile networks. The monolithic network elements(e.g., MME, PGW, etc.) are split into smaller network functions to provide customized services. However, the management and deployment of network functions in service based 5 G core network are still big challenges. In this paper, we propose a novel management architecture for 5 G service based core network based on NFV and SDN. Combined with SDN, NFV and edge computing, the proposed framework can provide distributed and on-demand deployment of network functions, service guaranteed network slicing, flexible orchestration of network functions and optimal workload allocation. Simulations are conducted to show that the proposed framework and algorithm are effective in terms of reducing network operating cost.
基金supported by the National Key Research and Development Program of China(2017YFD0600401)the Fundamental Research Funds for the Central Universities(2572019CP08)
文摘Korean larch(Larix olgensis)is one of the main tree species for aff orestation and timber production in northeast China.However,its timber quality and growth ability are largely infl uenced by crown size,structure and shape.The majority of crown models are static models based on tree size and stand characteristics from temporary sample plots,but crown dynamic models has seldom been constructed.Therefore,this study aimed to develop height to crown base(HCB)and crown length(CL)dynamic models using the branch mortality technique for a Korean larch plantation.The nonlinear mixed-eff ects model with random eff ects,variance functions and correlation structures,was used to build HCB and CL dynamic models.The data were obtained from 95 sample trees of 19 plots in Meng JiaGang forest farm in Northeast China.The results showed that HCB progressively increases as tree age,tree height growth(HT growth)and diameter at breast height growth(DBH growth).The CL was increased with tree age in 20 years ago,and subsequently stabilized.HT growth,DBH growth stand basal area(BAS)and crown competition factor(CCF)signifi cantly infl uenced HCB and CL.The HCB was positively correlated with BAS,HT growth and DBH growth,but negatively correlated with CCF.The CL was positively correlated with BAS and CCF,but negatively correlated with DBH growth.Model fi tting and validation confi rmed that the mixed-eff ects model considering the stand and tree level random eff ects was accurate and reliable for predicting the HCB and CL dynamics.However,the models involving adding variance functions and time series correlation structure could not completely remove heterogeneity and autocorrelation,and the fi tting precision of the models was reduced.Therefore,from the point of view of application,we should take care to avoid setting up over-complex models.The HCB and CL dynamic models in our study may also be incorporated into stand growth and yield model systems in China.
基金This work was finarcially supported by the National Natural Science Foundation of China(Grant No.50039016)
文摘A Mobile Offshore Base (MOB) is a multi-purpose logistics base, which can be stationed in coastal or international waters. In the conceptual design of the MOB, attention should he paid to the dynamic responses of the inter-module connectors because tremendous loads occur in the connectors. In this paper, a study on dynamic responses of the MOB connectors is carried out by use of the Rigid Module Flexible Connector (RMFC) model which assumes that the module stiffness is significantly larger than that of the connector. In the analysis, the connector is modeled as a linear spring, which restricts relative translations but allows for relative rotations of modules. The 3-D source distribution method is adopted to determine the hydrodynamic forces of the modules, and the hydrodynamic interaction between modules is taken into account. The module motions and connector loads for 12 connector stiffness cases in regular and irregular waves are calculated with the multi-rigid-body motion equations. And the calculated results are compared with those from relative references. It is shown that the results obtained by different methods are in good agreement.
基金supported by the National Natural Science Foundation of China(Grant No.51709021)the Open Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2016491111)
文摘Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend and short-term fluctuation of the dam seepage behavior, two monitoring models were developed, one for the base flow effect and one for daily variation of dam seepage elements. In the first model, to avoid the influence of the time lag effect on the evaluation of seepage variation with the time effect component of seepage elements, the base values of the seepage element and the reservoir water level were extracted using the wavelet multi-resolution analysis method, and the time effect component was separated by the established base flow effect monitoring model. For the development of the daily variation monitoring model for dam seepage elements, all the previous factors, of which the measured time series prior to the dam seepage element monitoring time may have certain influence on the monitored results, were considered. Those factors that were positively correlated with the analyzed seepage element were initially considered to be the support vector machine(SVM) model input factors, and then the SVM kernel function-based sensitivity analysis was performed to optimize the input factor set and establish the optimized daily variation SVM model. The efficiency and rationality of the two models were verified by case studies of the water level of two piezometric tubes buried under the slope of a concrete gravity dam.Sensitivity analysis of the optimized SVM model shows that the influences of the daily variation of the upstream reservoir water level and rainfall on the daily variation of piezometric tube water level are processes subject to normal distribution.
文摘QNET-CFD is a thematic network on quality and trust for the industrial applications of Computational Fluid Dynamics (CFD), developed under the European Union R&D program. The main objectives of QNET-CFD were to collect CFD and experimental data in a systematic and quality controlled way and to set the basis for a consistent Knowledge Base in support of CFD guidance and validation. The QNET-CFD activity was organized around six Thematic Areas (TAs) covering the following industry sectors: external aerodynamics; combustion & heat transfer; chemical process, thermal hydraulics and nuclear safety; civil construction & HVAC; environment; turbomachinery internal flows. The main outcome of the QNET-CFD actions is the Knowledge Base (KB) with contains in a user oriented interface, extensive experimental and CFD data for a large number of test cases subdivided into 53 Application Challenges (AC) and 43 Underlying Flow Regimes (UFR). The KB contains, in addition to state-of-the-art reviews for each of the six thematic areas, Best Practice Advice (BPA) in the use of CFD for most of AC. This is considered as a significant contribution form the QNET-CFD activities and it is expected that the level of the thrust and quality in CFD will hereby be improved.