城市POI的分布情况客观反映了一个城市各行各业的发展情况,传统获取POI的测绘手段成本高、更新周期长、时效性差,而基于位置的社交网络(Location-Based Social Network,LBSN)平台的发展为实现城市POI的感知提供了一种新思路。本文提出...城市POI的分布情况客观反映了一个城市各行各业的发展情况,传统获取POI的测绘手段成本高、更新周期长、时效性差,而基于位置的社交网络(Location-Based Social Network,LBSN)平台的发展为实现城市POI的感知提供了一种新思路。本文提出一种基于LBSN数据聚类分析的城市POI感知方法,首先,对LBSN数据进行预处理,包括清洗重复数据、删除无效数据、数据预分类等,以提高数据的有效性;其次,提出一种改进的DBSCAN算法,对处理后的数据进行聚类分析,从而得到准确度较高的城市各类POI分布情况。实验结果表明,与传统的DBSCAN算法以及K-means算法相比,本文提出的算法有更好的聚类效果,且在聚类指标上有更大的CH指数值和更小的DBI指数值。展开更多
提出一种基于位置的社交网络中利用深度学习的POI推荐方法。建立一个地理时空注意力网络,以发现总体序列依赖性和微妙的POI-POI关系;将签到序列中连续的地理距离和时间间隔信息加入到地理时空注意力网络中,建立用户个性化移动行为和挖...提出一种基于位置的社交网络中利用深度学习的POI推荐方法。建立一个地理时空注意力网络,以发现总体序列依赖性和微妙的POI-POI关系;将签到序列中连续的地理距离和时间间隔信息加入到地理时空注意力网络中,建立用户个性化移动行为和挖掘用户个性化时空偏好;设计特定于上下文的共同注意力网络,通过从签到历史中自适应选择相关签到活动来学习更改用户偏好,使地理-时空门控循环单元网络(geographical-spatiotemporal gated recurrent unit network,GS-GRUN)能够区分不同签到的用户偏好程度。在Foursquare和Gowalla数据集上的实验结果表明,所提算法能够显著提升POI推荐方法的推荐匹配度。展开更多
随着基于位置的社交网络(老师location-based social network,LSBN)的广泛应用,POI(point-of-interest)推荐对用户越来越重要,但签到数据稀疏和用户兴趣动态性等问题均给POI推荐带来困难。为此,提出了一种基于动态异质网络的协同过滤推...随着基于位置的社交网络(老师location-based social network,LSBN)的广泛应用,POI(point-of-interest)推荐对用户越来越重要,但签到数据稀疏和用户兴趣动态性等问题均给POI推荐带来困难。为此,提出了一种基于动态异质网络的协同过滤推荐方法。该方法综合用户位置关系,用户社交关系的好友信息与区域活跃用户信息的同时,还参考兴趣点的分类流行度因素,形成了一种个性化的联合推荐方法。该方法有效缓解了数据稀疏性问题,提高了推荐效果。通过在Foursqure(NYC)数据集和Gowalla数据集上实验表明,算法在精确率与召回率上较其他当前流行算法均有明显提升。展开更多
随着移动社交平台的发展,基于位置的社交网络服务(Location-Based Social Network,LBSN)已进入人们的视野。在LBSN中,根据用户的签到数据进行兴趣点(Point-of-Interest,POI)推荐是近年来研究的热点问题。提出一种基于极限学习机(Extreme...随着移动社交平台的发展,基于位置的社交网络服务(Location-Based Social Network,LBSN)已进入人们的视野。在LBSN中,根据用户的签到数据进行兴趣点(Point-of-Interest,POI)推荐是近年来研究的热点问题。提出一种基于极限学习机(Extreme Learning Machine,ELM)的POI推荐算法,提取用户的个人偏好、朋友偏好、类型偏好、流行度偏好等特征,利用ELM提供的分类方法,使用上述特征向量集合训练ELM分类器,最终根据分类结果向用户推荐POI。本文使用Foursquare和Twitter数据集的实验结果表明,该方法在精确率和效率方面均有所提高。展开更多
兴趣点(Point-Of-Interest,POI)推荐是基于位置的社交网络(Location-Based Social Networks,LBSN)中的一项重要个性化服务.由于LBSN中数据的极度稀疏性,基于协同过滤的算法推荐精度不高,文中提出基于元路径的兴趣点推荐算法.首先根据LBS...兴趣点(Point-Of-Interest,POI)推荐是基于位置的社交网络(Location-Based Social Networks,LBSN)中的一项重要个性化服务.由于LBSN中数据的极度稀疏性,基于协同过滤的算法推荐精度不高,文中提出基于元路径的兴趣点推荐算法.首先根据LBSN结构特征构建带权异构网络模型,其次引入元路径来描述节点间不同类型关联关系,基于三度影响力设置用户-兴趣点间元路径特征集,然后通过随机游走方法计算元路径特征值以度量实例路径中的首尾节点间关联度,并利用监督学习方法获得各特征的权值,最后计算特定用户将来在各兴趣点的签到概率从而生成推荐列表.文中在3个真实LBSN签到数据集上进行了实验,结果表明该算法可以有效缓解LBSN中的极度稀疏性问题,比传统推荐算法有更好的推荐效果.展开更多
兴趣点推荐是在基于位置社会网络(location-based social network,LBSN)中流行起来的一种全新形式的推荐.利用LBSN所包含的丰富信息进行个性化推荐能有效增强用户体验和提高用户对LBSN的依赖度.针对无显示用户偏好、兴趣非一致性和数据...兴趣点推荐是在基于位置社会网络(location-based social network,LBSN)中流行起来的一种全新形式的推荐.利用LBSN所包含的丰富信息进行个性化推荐能有效增强用户体验和提高用户对LBSN的依赖度.针对无显示用户偏好、兴趣非一致性和数据稀疏性等挑战性问题,研究一种针对LBSN的双重细粒度POI推荐策略,即一方面将用户的全部历史签到信息以小时为单位细分为24个时间段,另一方面将每个POI细分为多个潜在主题及其分布,同时利用用户的历史签到信息和评论信息挖掘出用户在不同时间段的主题偏好,以实现POI的Top-N推荐.为实现该推荐思路,首先,根据用户的评论信息,运用LDA模型提取出每个POI的主题分布;然后,对于每个用户,将其签到信息划分到24个时间段中,通过连接相应的POI主题分布映射出用户在不同时间段对每个主题的兴趣偏好.为解决数据稀疏问题,运用高阶奇异值分解算法对用户-主题-时间三阶张量进行分解,获取用户在每个时间段对每个主题更为准确的兴趣评分.在真实数据集上进行了性能测试,结果表明所提出的推荐策略具有较好的推荐效果.展开更多
文摘城市POI的分布情况客观反映了一个城市各行各业的发展情况,传统获取POI的测绘手段成本高、更新周期长、时效性差,而基于位置的社交网络(Location-Based Social Network,LBSN)平台的发展为实现城市POI的感知提供了一种新思路。本文提出一种基于LBSN数据聚类分析的城市POI感知方法,首先,对LBSN数据进行预处理,包括清洗重复数据、删除无效数据、数据预分类等,以提高数据的有效性;其次,提出一种改进的DBSCAN算法,对处理后的数据进行聚类分析,从而得到准确度较高的城市各类POI分布情况。实验结果表明,与传统的DBSCAN算法以及K-means算法相比,本文提出的算法有更好的聚类效果,且在聚类指标上有更大的CH指数值和更小的DBI指数值。
文摘提出一种基于位置的社交网络中利用深度学习的POI推荐方法。建立一个地理时空注意力网络,以发现总体序列依赖性和微妙的POI-POI关系;将签到序列中连续的地理距离和时间间隔信息加入到地理时空注意力网络中,建立用户个性化移动行为和挖掘用户个性化时空偏好;设计特定于上下文的共同注意力网络,通过从签到历史中自适应选择相关签到活动来学习更改用户偏好,使地理-时空门控循环单元网络(geographical-spatiotemporal gated recurrent unit network,GS-GRUN)能够区分不同签到的用户偏好程度。在Foursquare和Gowalla数据集上的实验结果表明,所提算法能够显著提升POI推荐方法的推荐匹配度。
文摘随着基于位置的社交网络(老师location-based social network,LSBN)的广泛应用,POI(point-of-interest)推荐对用户越来越重要,但签到数据稀疏和用户兴趣动态性等问题均给POI推荐带来困难。为此,提出了一种基于动态异质网络的协同过滤推荐方法。该方法综合用户位置关系,用户社交关系的好友信息与区域活跃用户信息的同时,还参考兴趣点的分类流行度因素,形成了一种个性化的联合推荐方法。该方法有效缓解了数据稀疏性问题,提高了推荐效果。通过在Foursqure(NYC)数据集和Gowalla数据集上实验表明,算法在精确率与召回率上较其他当前流行算法均有明显提升。
文摘随着移动社交平台的发展,基于位置的社交网络服务(Location-Based Social Network,LBSN)已进入人们的视野。在LBSN中,根据用户的签到数据进行兴趣点(Point-of-Interest,POI)推荐是近年来研究的热点问题。提出一种基于极限学习机(Extreme Learning Machine,ELM)的POI推荐算法,提取用户的个人偏好、朋友偏好、类型偏好、流行度偏好等特征,利用ELM提供的分类方法,使用上述特征向量集合训练ELM分类器,最终根据分类结果向用户推荐POI。本文使用Foursquare和Twitter数据集的实验结果表明,该方法在精确率和效率方面均有所提高。
文摘兴趣点(Point-Of-Interest,POI)推荐是基于位置的社交网络(Location-Based Social Networks,LBSN)中的一项重要个性化服务.由于LBSN中数据的极度稀疏性,基于协同过滤的算法推荐精度不高,文中提出基于元路径的兴趣点推荐算法.首先根据LBSN结构特征构建带权异构网络模型,其次引入元路径来描述节点间不同类型关联关系,基于三度影响力设置用户-兴趣点间元路径特征集,然后通过随机游走方法计算元路径特征值以度量实例路径中的首尾节点间关联度,并利用监督学习方法获得各特征的权值,最后计算特定用户将来在各兴趣点的签到概率从而生成推荐列表.文中在3个真实LBSN签到数据集上进行了实验,结果表明该算法可以有效缓解LBSN中的极度稀疏性问题,比传统推荐算法有更好的推荐效果.
文摘兴趣点推荐是在基于位置社会网络(location-based social network,LBSN)中流行起来的一种全新形式的推荐.利用LBSN所包含的丰富信息进行个性化推荐能有效增强用户体验和提高用户对LBSN的依赖度.针对无显示用户偏好、兴趣非一致性和数据稀疏性等挑战性问题,研究一种针对LBSN的双重细粒度POI推荐策略,即一方面将用户的全部历史签到信息以小时为单位细分为24个时间段,另一方面将每个POI细分为多个潜在主题及其分布,同时利用用户的历史签到信息和评论信息挖掘出用户在不同时间段的主题偏好,以实现POI的Top-N推荐.为实现该推荐思路,首先,根据用户的评论信息,运用LDA模型提取出每个POI的主题分布;然后,对于每个用户,将其签到信息划分到24个时间段中,通过连接相应的POI主题分布映射出用户在不同时间段对每个主题的兴趣偏好.为解决数据稀疏问题,运用高阶奇异值分解算法对用户-主题-时间三阶张量进行分解,获取用户在每个时间段对每个主题更为准确的兴趣评分.在真实数据集上进行了性能测试,结果表明所提出的推荐策略具有较好的推荐效果.