BACKGROUND Determination of platybasia and basilar kyphosis are significant parts of routine cranial magnetic resonance(MR)interpretations.These situations may explain a patient’s symptoms or may be associated with o...BACKGROUND Determination of platybasia and basilar kyphosis are significant parts of routine cranial magnetic resonance(MR)interpretations.These situations may explain a patient’s symptoms or may be associated with other anomalies.AIM To indicate the interobserver and intraobserver reliability of the skull base angles(SBA)(Koenigsberg standard)and modified SBA(mSBA)measurement techniques.METHODS In total,391 patients who had undergone cranial MR imaging were re-assessed regarding the SBA measurements.The SBA and mSBA techniques were used on MR images.Two reviewers independently measured the same angles twice within a 15-day interval,using different monitors.Intraclass correlation coefficient(ICC)was calculated to reveal the intraobserver and interobserver agreements.RESULTS There was an excellent agreement between reviewers regarding both angle measurements(ICC was 0.998 for SBA and mSBA).Excellent agreement levels were also observed for intraobserver measurements.ICC was 0.998 for SBA and 0.999 for mSBA for reviewer 1.ICC was 0.997 for SBA and 0.999 for mSBA according to the measurement results of reviewer 2.Higher SBA and mSBA values were observed for females compared to males.There was no correlation between SBA and age for SBA.However,a negative and low-level correlation was observed between mSBA values and age for both reviewers.CONCLUSION SBA and mSBA measurements indicated excellent agreement regarding interobserver and intraobserver differences.The study results showed that SBA angles were reliable measurement techniques to be used on MR images.展开更多
In this paper,we introduce an incident angle based fusion method for radar and infrared sensors to improve the recognition rate of complex targets under half space scenarios,e.g.,vehicles on the ground in this paper.F...In this paper,we introduce an incident angle based fusion method for radar and infrared sensors to improve the recognition rate of complex targets under half space scenarios,e.g.,vehicles on the ground in this paper.For radar sensors,convolutional operation is introduced into the autoencoder,a“winner-take-all(WTA)”convolutional autoencoder(CAE)is used to improve the recognition rate of the radar high resolution range profile(HRRP).Moreover,different from the free space,the HRRP in half space is more complex.In order to get closer to the real situation,the half space HRRP is simulated as the dataset.The recognition rate has a growth more than 7%com-pared with the traditional CAE or denoised sparse autoencoder(DSAE).For infrared sensor,a convolutional neural network(CNN)is used for infrared image recognition.Finally,we com-bine the two results with the Dempster-Shafer(D-S)evidence theory,and the discounting operation is introduced in the fusion to improve the recognition rate.The recognition rate after fusion has a growth more than 7%compared with a single sensor.After the discounting operation,the accuracy rate has been improved by 1.5%,which validates the effectiveness of the proposed method.展开更多
Based on a single-channel laser self-mixing interferometcr, we present a new silnultaneous measurement of the vibration amplitude and tile rotation angle of objects that both affect the power spectrum containing two p...Based on a single-channel laser self-mixing interferometcr, we present a new silnultaneous measurement of the vibration amplitude and tile rotation angle of objects that both affect the power spectrum containing two peaks of the interferometer signals. The fitted results indicate that the curve of the peak frequency versus the vibration amplitude follows a linear distribution, and the curve of the difference of the two-peak power values versus the angle follows a Gaussian distribution. A vibration amplitude with an error less than 3.0% and a rotation angle with an error less than 11.7% are calculated from the fitted results.展开更多
We propose the active metasurface using phase-change material Ge2Sb2Te5(GST), which has two distinct phases so called amorphous and crystalline phases, for an ultrathin light path switching device. By arranging mult...We propose the active metasurface using phase-change material Ge2Sb2Te5(GST), which has two distinct phases so called amorphous and crystalline phases, for an ultrathin light path switching device. By arranging multiple anisotropic GST nanorods, the gradient metasurface, which has opposite directions of phase gradients at the two distinct phases of GST, is demonstrated theoretically and numerically. As a result, in the case of normal incidence of circularly polarized light at the wavelength of 1650 nm, the cross-polarized light deflects to-55.6° at the amorphous phase and +55.6° at the crystalline phase with the signal-to-noise ratio above 10 dB.展开更多
In this paper, an asymmetric array structure of space laser communication receiver is proposed. This structure can greatly reduce alignment requirement, and lighten the signal strength jitter caused by atmospheric tur...In this paper, an asymmetric array structure of space laser communication receiver is proposed. This structure can greatly reduce alignment requirement, and lighten the signal strength jitter caused by atmospheric turbulence. A prototype of the proposed structure is fabricated and a 2.5 Mbit/s on-off keying(OOK) modulated demonstration link over 40 m free space is built. This asymmetric array structure can effectively collect optical signal while rotating in a window angle of ±17°, and the bit error ratio(BER) keeps zero.展开更多
One of the most important challenges in the Wireless Sensor Networks is to improve the performance of the network by extending the lifetime of the sensor nodes. So the focus is on obtaining a trade-off between minimiz...One of the most important challenges in the Wireless Sensor Networks is to improve the performance of the network by extending the lifetime of the sensor nodes. So the focus is on obtaining a trade-off between minimizing the delay involved and reducing the energy consumption of the sensor nodes which directly translate to an extended lifetime of the sensor nodes. An effective Sleep-wake scheduling mechanism can prolong the lifetime of the sensors by eliminating idle power listening, which could result in substantial delays. To counter this, an anycast forwarding scheme that could forward the packet opportunistically to the first awaken node may result in retransmissions as if the chosen node falls in resource constraints. The algorithm, namely Prim’s-Dual is proposed to solve the said problem. The algorithm considers five crucial parameters, namely the residual energy of the nodes, transmission power, receiving power, packet loss rate, interference from which the next hop is determined to extend the lifetime of the sensor node. Since the proposed work is framed keeping critical event monitoring in mind, the sleep-wake scheduling is modified as low-power, high-power scheduling where all nodes are in low-power and the nodes needed for data transmission are respectively turned on to high-power mode. The integrated framework provides several opportunities for performance enhancement for conflict-free transmissions. The aim of our algorithm is to show reliable, energy efficient transfer without compromising on lifetime and delay. The further effectiveness of the protocol is verified. The results demonstrate that the proposed protocol can efficiently handle network scalability with acceptable latency and overhead.展开更多
文摘BACKGROUND Determination of platybasia and basilar kyphosis are significant parts of routine cranial magnetic resonance(MR)interpretations.These situations may explain a patient’s symptoms or may be associated with other anomalies.AIM To indicate the interobserver and intraobserver reliability of the skull base angles(SBA)(Koenigsberg standard)and modified SBA(mSBA)measurement techniques.METHODS In total,391 patients who had undergone cranial MR imaging were re-assessed regarding the SBA measurements.The SBA and mSBA techniques were used on MR images.Two reviewers independently measured the same angles twice within a 15-day interval,using different monitors.Intraclass correlation coefficient(ICC)was calculated to reveal the intraobserver and interobserver agreements.RESULTS There was an excellent agreement between reviewers regarding both angle measurements(ICC was 0.998 for SBA and mSBA).Excellent agreement levels were also observed for intraobserver measurements.ICC was 0.998 for SBA and 0.999 for mSBA for reviewer 1.ICC was 0.997 for SBA and 0.999 for mSBA according to the measurement results of reviewer 2.Higher SBA and mSBA values were observed for females compared to males.There was no correlation between SBA and age for SBA.However,a negative and low-level correlation was observed between mSBA values and age for both reviewers.CONCLUSION SBA and mSBA measurements indicated excellent agreement regarding interobserver and intraobserver differences.The study results showed that SBA angles were reliable measurement techniques to be used on MR images.
基金supported by the National Natural Science Foundation of China(61571022,61971022).
文摘In this paper,we introduce an incident angle based fusion method for radar and infrared sensors to improve the recognition rate of complex targets under half space scenarios,e.g.,vehicles on the ground in this paper.For radar sensors,convolutional operation is introduced into the autoencoder,a“winner-take-all(WTA)”convolutional autoencoder(CAE)is used to improve the recognition rate of the radar high resolution range profile(HRRP).Moreover,different from the free space,the HRRP in half space is more complex.In order to get closer to the real situation,the half space HRRP is simulated as the dataset.The recognition rate has a growth more than 7%com-pared with the traditional CAE or denoised sparse autoencoder(DSAE).For infrared sensor,a convolutional neural network(CNN)is used for infrared image recognition.Finally,we com-bine the two results with the Dempster-Shafer(D-S)evidence theory,and the discounting operation is introduced in the fusion to improve the recognition rate.The recognition rate after fusion has a growth more than 7%compared with a single sensor.After the discounting operation,the accuracy rate has been improved by 1.5%,which validates the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China under Grant Nos.61275165,61201401,and 61307098
文摘Based on a single-channel laser self-mixing interferometcr, we present a new silnultaneous measurement of the vibration amplitude and tile rotation angle of objects that both affect the power spectrum containing two peaks of the interferometer signals. The fitted results indicate that the curve of the peak frequency versus the vibration amplitude follows a linear distribution, and the curve of the difference of the two-peak power values versus the angle follows a Gaussian distribution. A vibration amplitude with an error less than 3.0% and a rotation angle with an error less than 11.7% are calculated from the fitted results.
基金supported by the Center for Advanced Meta-Materials(CAMM) funded by the Ministry of Science,ICT and Future Planning as Global Frontier Project(Grant No.CAMM-2014M3A6B3063710)by the National Research Foundation of Korea(NRF)grant funded by the Korea government Ministry of Science and ICT(Grant No.2017R1A4A1015565)
文摘We propose the active metasurface using phase-change material Ge2Sb2Te5(GST), which has two distinct phases so called amorphous and crystalline phases, for an ultrathin light path switching device. By arranging multiple anisotropic GST nanorods, the gradient metasurface, which has opposite directions of phase gradients at the two distinct phases of GST, is demonstrated theoretically and numerically. As a result, in the case of normal incidence of circularly polarized light at the wavelength of 1650 nm, the cross-polarized light deflects to-55.6° at the amorphous phase and +55.6° at the crystalline phase with the signal-to-noise ratio above 10 dB.
基金supported by the National Natural Science Foundation of China (Nos.61674142 and 62041502)。
文摘In this paper, an asymmetric array structure of space laser communication receiver is proposed. This structure can greatly reduce alignment requirement, and lighten the signal strength jitter caused by atmospheric turbulence. A prototype of the proposed structure is fabricated and a 2.5 Mbit/s on-off keying(OOK) modulated demonstration link over 40 m free space is built. This asymmetric array structure can effectively collect optical signal while rotating in a window angle of ±17°, and the bit error ratio(BER) keeps zero.
文摘One of the most important challenges in the Wireless Sensor Networks is to improve the performance of the network by extending the lifetime of the sensor nodes. So the focus is on obtaining a trade-off between minimizing the delay involved and reducing the energy consumption of the sensor nodes which directly translate to an extended lifetime of the sensor nodes. An effective Sleep-wake scheduling mechanism can prolong the lifetime of the sensors by eliminating idle power listening, which could result in substantial delays. To counter this, an anycast forwarding scheme that could forward the packet opportunistically to the first awaken node may result in retransmissions as if the chosen node falls in resource constraints. The algorithm, namely Prim’s-Dual is proposed to solve the said problem. The algorithm considers five crucial parameters, namely the residual energy of the nodes, transmission power, receiving power, packet loss rate, interference from which the next hop is determined to extend the lifetime of the sensor node. Since the proposed work is framed keeping critical event monitoring in mind, the sleep-wake scheduling is modified as low-power, high-power scheduling where all nodes are in low-power and the nodes needed for data transmission are respectively turned on to high-power mode. The integrated framework provides several opportunities for performance enhancement for conflict-free transmissions. The aim of our algorithm is to show reliable, energy efficient transfer without compromising on lifetime and delay. The further effectiveness of the protocol is verified. The results demonstrate that the proposed protocol can efficiently handle network scalability with acceptable latency and overhead.