TiC based steel bonded carbides with the addition of nano TiN were prepared by vacuum sintering techniques.The microstructure was investigated using scanning electron microscopy(SEM) and transmission electron micros...TiC based steel bonded carbides with the addition of nano TiN were prepared by vacuum sintering techniques.The microstructure was investigated using scanning electron microscopy(SEM) and transmission electron microscopy(TEM),and the mechanical properties,such as bending strength,impact toughness,hardness,and density,were measured.The results indicate that the grain size becomes small and there is uniformity in the steel bonded carbide with nano addition;several smaller carbide particles are also found to be inlaid in the rim of the larger carbide grains and prevent the coalescence of TiC grains.The smaller and larger carbide grains joint firmly,and then the reduction of the average size of the grains leads to the increase in the mechanical properties of the steel bonded carbides with nano addition.But the mechanical properties do not increase monotonously with an increase in nano addition.When the nano TiN addition accounts for 6-8 wt.% of the amount of steel bonded carbides,the mechanical properties reach the maximum values and then decrease with further increase in nano TiN addition.展开更多
: The effects of diffusion bonding temperature and holding time on the joint strength of Ti3Al base alloy has been investigated in this paper. The shear strength of Ti-14Al-21Nb-3Mo-V alloy diffusion bonding joint und...: The effects of diffusion bonding temperature and holding time on the joint strength of Ti3Al base alloy has been investigated in this paper. The shear strength of Ti-14Al-21Nb-3Mo-V alloy diffusion bonding joint under pressure of 12 MPa at 990℃ for 70 min was obtained to 797.6 MPa which approaches the base material strength. In addition, a short-time diffosion bonding process was studied in order to decrease the bonding cost. With the deformation of the specimens of 2.5% and the bonding temperature of 990℃ for 15 min, the bonding strength could reach 801 MPa.展开更多
An investigation of transient liquid phase (TLP) diffusion bonding of a Ni 3Al base directionally solidified superalloy, IC6 alloy, was presented. The interlayer alloy employed was Ni Mo Cr B powder alloy. The results...An investigation of transient liquid phase (TLP) diffusion bonding of a Ni 3Al base directionally solidified superalloy, IC6 alloy, was presented. The interlayer alloy employed was Ni Mo Cr B powder alloy. The results show that the microstructure of the TLP diffusion bonded joints is a combination of γ solid solution (or a γ+γ′ structure) and borides. With the bonding time increasing, the quantity of the borides both in bonding seam and adjacent zones is gradually reduced, and the joint stress rupture property is improved. The obtained stress rupture property of the TLP bonded joints is on a level with the transverse property of IC6 base materials. [展开更多
A single mode hybrid Ⅲ-Ⅴ/silicon on-chip laser based on the flip-chip bonding technology for on-chip optical interconnection is demonstrated. A single mode Fabry-Perot laser structure with micro-structures on an InP...A single mode hybrid Ⅲ-Ⅴ/silicon on-chip laser based on the flip-chip bonding technology for on-chip optical interconnection is demonstrated. A single mode Fabry-Perot laser structure with micro-structures on an InP ridge waveguide is designed and fabricated on an InP/AIGaInAs multiple quantum well epitaxial layer structure wafer by using i-line lithography. Then, a silicon waveguide platform including a laser mounting stage is designed and fabricated on a silicon-on-insulator substrate. The single mode laser is flip-chip bonded on the laser mounting stage. The lasing light is butt-coupling to the silicon waveguide. The laser power output from a silicon waveguide is 1.3roW, and the threshold is 37mA at room temperature and continuous wave operation.展开更多
Interactions between different components in α-starch based composite binder for green sand mould/core were investigated by using XRD, IR spectra, 1H NMR spectra and SEM. Several adhesive hardening structures and the...Interactions between different components in α-starch based composite binder for green sand mould/core were investigated by using XRD, IR spectra, 1H NMR spectra and SEM. Several adhesive hardening structures and theories of the binder at room temperature were proposed according to the interactions between various compositions. Thus, the reasons for the binder to have excellent combination properties and unique adhesive bonding and self-curing characteristics were explained by these theories successfully. And the theories are of great directive importance to design and development of composite binder for green sand mould/core.展开更多
Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the ...Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the base material region. The microstructure of the particulate segregation region consists of alumina particulate and Al alloy matrix with the Al 2Cu and MgAl 2O 4. It contains more and smaller alumina particulates compared with the base material region. The TLP bonded joints have the tensile strength of 150 MPa ~200 MPa and the shear strength of 70 MPa ~100 MPa . With increasing tensile stress, cracks initiate in the particulate segregation region, especially in the particulate/particulate interface and the particulate/matrix interface, and propagate along particulate/matrix interface, througth thin matrix metal and by linking up the close cracks. The particulate segregation region is the weakest during tensile testing and shear testing due to obviously increased proportion of weak bonds (particulate particulate bond and particulate matrix bond).展开更多
Semi-empirical method PM3 was used to study the geometry and vibrational spectrum of N-(2-hydroxy-l-naphthyl-methylene)-l-pyrenamine (NPY) with the intermediate hydrogen bond. Results are comparable to experimentation...Semi-empirical method PM3 was used to study the geometry and vibrational spectrum of N-(2-hydroxy-l-naphthyl-methylene)-l-pyrenamine (NPY) with the intermediate hydrogen bond. Results are comparable to experimentations. Based on results of both NPY and its model, N-(2-hydroxy-l-naphthyl-methylene)aniline, it was found that the N-(2-hydroxy-l-naphthyl-methylene) group is principally responsible for the special hydrogen bonding through conjugation effect.展开更多
Vacuum diffusion bonding of a TiAl based alloy (TAD) to a titanium alloy (TC2) was carried out at 1 273 K for 15~120 min under a pressure of 25 MPa . The kinds of the reaction products and the interface s...Vacuum diffusion bonding of a TiAl based alloy (TAD) to a titanium alloy (TC2) was carried out at 1 273 K for 15~120 min under a pressure of 25 MPa . The kinds of the reaction products and the interface structures of the joints were investigated by SEM, EPMA and XRD. Based on this, a formation mechanism of the interface structure was elucidated. Experimental and analytical results show that two reaction layers have formed during the diffusion bonding of TAD to TC2. One is Al rich α(Ti)layer adjacent to TC2,and the other is (Ti 3Al+TiAl)layer adjacent to TAD,thus the interface structure of the TAD/TC2 joints is TAD/(Ti 3Al+TiAl)/α(Ti)/TC2.This interface structure forms according to a three stage mechanism,namely(a)the occurrence of a single phase α(Ti)layer;(b)the occurrence of a duplex phase(Ti 3Al+TiAl)layer;and(c)the growth of the α(Ti)and (Ti 3Al+TiAl)layers.展开更多
High temperature oxidation behavior of two kinds of nitride bonded SiC based refractories wtls bwestigated at I 100-1 .500℃ by means of X-ray di[fractometer, scanning electronic microscopy and thermogravimetry. The r...High temperature oxidation behavior of two kinds of nitride bonded SiC based refractories wtls bwestigated at I 100-1 .500℃ by means of X-ray di[fractometer, scanning electronic microscopy and thermogravimetry. The results show that : (1) with the temperature im'reasing, the oxidation mass increment rote of the specimen increases.first and then. decreases, and oxidation passi'va tion occttrs; (2) the oxidation resistance of SiAION bonded SiC refractories is superior to that of Si3N4 botlded SiC refractories ; (3) high temperature oxidtttion resuits itt the increase of compressive strength at room temperature of SiC based refractoviesiaes comlmred with specimen before oxidatiotl; the compressive strength of SIMON bonded SiC specimens oxidized at high temperatures decreases with the increase of the temperature as a result of formation amt burst of surfhce bubble, while the decrease of compressive strength of Sign4 bonded SiC specimens oxidized at high temperatures is owitng to the bwrease of the consistency of netlike crack assoeiated with cristobalite transfornuttion during cooling.展开更多
The reaction of bis-[2-amino-4-pheny1-5-thiazolyl] disulfide with 5-nitro-salicylaldehyde in absolute ethanol resulted in the formation of a new Schiff base ligand H<sub>2</sub>L (1). Characterization of t...The reaction of bis-[2-amino-4-pheny1-5-thiazolyl] disulfide with 5-nitro-salicylaldehyde in absolute ethanol resulted in the formation of a new Schiff base ligand H<sub>2</sub>L (1). Characterization of the ligand was performed by FT-IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, UV-Vis, elemental analysis and single crystal X-ray diffraction. The ligand, (1), possesses a disulfide –S–S– bridge of 2.1121 (3) ? length, and the molecule adopts a cis-conformation around this bond. In the crystal structure of (1), an intramolecular O–H···N hydrogen bond with D… A distance of 2.69 (3) ? was present. The reaction of (1) with Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O and CuCl<sub>2</sub>·2H<sub>2</sub>O in methanol afforded the corresponding metal complexes. The obtained solids were further investigated by elemental analysis and UV-Vis titration that confirmed the formation of [CoL] and [ClCuHL] complexes. However, recrystallizaion of the Co(II) complex in dimethylsulfoxide caused the complete hydrolysis of the imine bond and afforded a Co(II) complex in which two 5-nitro-salicylaldehyde and two DMSO molecules were coordinated to the central metal in an octahedral fashion. This structure (2) was also confirmed by single crystal X-ray analysis.展开更多
A Ni-Cr-B-Si coating technique was developed and successfully applied on austenite grey iron substrate in a conventional resistance furnace under graphite powder protection. The microstructure, phase distribution, che...A Ni-Cr-B-Si coating technique was developed and successfully applied on austenite grey iron substrate in a conventional resistance furnace under graphite powder protection. The microstructure, phase distribution, chemical composition profile and microhardness along the coating layer depth were investigated. Shear strength of the coating was also tested. Microanalysis shows that the coating is consist of γ-Ni solution and γ-Ni+Ni3B lamellar eutectic, as well as small amount of Cr5B3 particles. Diffusion induced metallurgical bonding occurs at the coating/substrate interfaces, and the higher the temperature, the more sufficient elements diffused, the broader interfusion region and the larger bonding strength, but it has an optimum value. And the bonding strength at the interface can be enable to reach 250-270 MPa, which is nearly the same as that of processed by flame spray. The microhardness along the coating layer depth shows a gradient distribution manner.展开更多
Based on the two-component relativistic effective core potential and matched basis sets cc-pwcvnz-pp (n=Q, 5), combining the completed basis-set extrapolation of electronic correlation energy and the fourth-order po...Based on the two-component relativistic effective core potential and matched basis sets cc-pwcvnz-pp (n=Q, 5), combining the completed basis-set extrapolation of electronic correlation energy and the fourth-order polynomial fitting technique, the bond length and spectroscopic constants of Hg2 are studied by the coupled cluster theory with spin-orbit coupling. Spin-orbit coupling is included in the post Hartree-Fock procedure, i.e., in the coupled- cluster iteration, to obtain more reliable theoretical results. The results show that our theoretical values agree with the experimental values very well and will be helpful to understand the spectral character of Hg2.展开更多
The curing behavior of lignin-based phenol-formaldehyde (LPF) resin with different contents of nano-crystalline cellulose (NCC) was studied by differential scanning calorimetry (DSC) at different heating rates (5, 10 ...The curing behavior of lignin-based phenol-formaldehyde (LPF) resin with different contents of nano-crystalline cellulose (NCC) was studied by differential scanning calorimetry (DSC) at different heating rates (5, 10 and 20°C/min) and the bonding property was evaluated by the wet shear strength and wood failure of two-ply plywood panels after soaking in water (48 hours at room temperature and followed by 1-hour boiling). The test results indicated that the NCC content had little influence on the peak temperature, activation energy and the total heat of reaction of LPF resin at 5 and 10°C/min. But at 20°C/min, LPF0.00% (LPF resin without NCC) showed the highest total heat of reaction, while LPF0.25% (LPF resin containing 0.25% NCC content) and LPF0.50% (LPF resin containing 0.50% NCC content) gave the lowest value. The wet shear strength was affected by the NCC content to a certain extent. With regard to the results of one-way analysis of variance, the bonding quality could be improved by NCC and the optimum NCC content ranged from 0.25% to 0.50%. The wood failure was also affected by the NCC content, but the trend with respect to NCC content was not clear.展开更多
目的:采用两种临床常用粘接剂,对个性化机加工底板托槽、新型网底托槽、双向倒钩底板托槽和传统网底托槽的抗剪切强度(shear bond strength,SBS)进行比较研究,为临床个性化机加工托槽的粘接提供参考。方法:收集48颗新鲜人类前磨牙,随机...目的:采用两种临床常用粘接剂,对个性化机加工底板托槽、新型网底托槽、双向倒钩底板托槽和传统网底托槽的抗剪切强度(shear bond strength,SBS)进行比较研究,为临床个性化机加工托槽的粘接提供参考。方法:收集48颗新鲜人类前磨牙,随机分为8组。A、B组选用个性化机加工底板托槽,C、D组选用新型网底托槽,E、F组选用双向倒钩底板托槽,G、H组选用传统网底托槽;A、C、E、G组使用化学固化粘接剂,B、D、F、H组使用光固化粘接剂。在粘接实验前,在所有托槽中,每种托槽随机选1颗,对其底板在放大40倍、100倍的扫描电镜下进行观察并拍照。使用万能材料实验机,对每组托槽进行SBS的测定,并进行粘接剂残留量(adhesive remnant index,ARI)计分。结果:使用化学固化粘接剂时,其他3种托槽相比,双向倒钩底板托槽粘接强度较低,差异有统计学意义(P<0.05)。使用光固化粘接剂时,双向倒钩底板托槽粘接强度最低,新型网底托槽较低,传统网底托槽和个性化机加工底板托槽粘接强度最高,差异有统计学意义(P<0.05),传统网底托槽和个性化机加工底板托槽之间粘接强度无明显差异(P>0.05)。各组ARI计分差异有统计学意义(P<0.05),进一步比较可得:H组ARI计分最小,且H组与A组和E组的差异有统计学意义(P<0.05)。结论:个性化机加工底板托槽使用光固化粘接剂或使用化学固化粘接剂对其粘接强度无明显影响,粘接强度均能满足正畸临床粘接的要求。H组脱粘接断裂部位相对更接近牙釉质,其余各组牙釉质在脱粘接过程中损伤的风险较小。展开更多
文摘TiC based steel bonded carbides with the addition of nano TiN were prepared by vacuum sintering techniques.The microstructure was investigated using scanning electron microscopy(SEM) and transmission electron microscopy(TEM),and the mechanical properties,such as bending strength,impact toughness,hardness,and density,were measured.The results indicate that the grain size becomes small and there is uniformity in the steel bonded carbide with nano addition;several smaller carbide particles are also found to be inlaid in the rim of the larger carbide grains and prevent the coalescence of TiC grains.The smaller and larger carbide grains joint firmly,and then the reduction of the average size of the grains leads to the increase in the mechanical properties of the steel bonded carbides with nano addition.But the mechanical properties do not increase monotonously with an increase in nano addition.When the nano TiN addition accounts for 6-8 wt.% of the amount of steel bonded carbides,the mechanical properties reach the maximum values and then decrease with further increase in nano TiN addition.
文摘: The effects of diffusion bonding temperature and holding time on the joint strength of Ti3Al base alloy has been investigated in this paper. The shear strength of Ti-14Al-21Nb-3Mo-V alloy diffusion bonding joint under pressure of 12 MPa at 990℃ for 70 min was obtained to 797.6 MPa which approaches the base material strength. In addition, a short-time diffosion bonding process was studied in order to decrease the bonding cost. With the deformation of the specimens of 2.5% and the bonding temperature of 990℃ for 15 min, the bonding strength could reach 801 MPa.
文摘An investigation of transient liquid phase (TLP) diffusion bonding of a Ni 3Al base directionally solidified superalloy, IC6 alloy, was presented. The interlayer alloy employed was Ni Mo Cr B powder alloy. The results show that the microstructure of the TLP diffusion bonded joints is a combination of γ solid solution (or a γ+γ′ structure) and borides. With the bonding time increasing, the quantity of the borides both in bonding seam and adjacent zones is gradually reduced, and the joint stress rupture property is improved. The obtained stress rupture property of the TLP bonded joints is on a level with the transverse property of IC6 base materials. [
基金Supported by the National Basic Research Program of China under Grant No 2012CB933501the National Natural Science Foundation of China under Grant Nos 61307033,61274070,61137003 and 61321063
文摘A single mode hybrid Ⅲ-Ⅴ/silicon on-chip laser based on the flip-chip bonding technology for on-chip optical interconnection is demonstrated. A single mode Fabry-Perot laser structure with micro-structures on an InP ridge waveguide is designed and fabricated on an InP/AIGaInAs multiple quantum well epitaxial layer structure wafer by using i-line lithography. Then, a silicon waveguide platform including a laser mounting stage is designed and fabricated on a silicon-on-insulator substrate. The single mode laser is flip-chip bonded on the laser mounting stage. The lasing light is butt-coupling to the silicon waveguide. The laser power output from a silicon waveguide is 1.3roW, and the threshold is 37mA at room temperature and continuous wave operation.
基金This work was supported by the China Postdoctoral Science Foundation(China Fund[1998]6)that was entitled“Synthesis of Modified Starch Binder and Its Application in Foundry”.Authors would like to thank academician Jinzong YANG and lecturer Hua ZHANG for the kind analyses and discussions.
文摘Interactions between different components in α-starch based composite binder for green sand mould/core were investigated by using XRD, IR spectra, 1H NMR spectra and SEM. Several adhesive hardening structures and theories of the binder at room temperature were proposed according to the interactions between various compositions. Thus, the reasons for the binder to have excellent combination properties and unique adhesive bonding and self-curing characteristics were explained by these theories successfully. And the theories are of great directive importance to design and development of composite binder for green sand mould/core.
文摘Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the base material region. The microstructure of the particulate segregation region consists of alumina particulate and Al alloy matrix with the Al 2Cu and MgAl 2O 4. It contains more and smaller alumina particulates compared with the base material region. The TLP bonded joints have the tensile strength of 150 MPa ~200 MPa and the shear strength of 70 MPa ~100 MPa . With increasing tensile stress, cracks initiate in the particulate segregation region, especially in the particulate/particulate interface and the particulate/matrix interface, and propagate along particulate/matrix interface, througth thin matrix metal and by linking up the close cracks. The particulate segregation region is the weakest during tensile testing and shear testing due to obviously increased proportion of weak bonds (particulate particulate bond and particulate matrix bond).
文摘Semi-empirical method PM3 was used to study the geometry and vibrational spectrum of N-(2-hydroxy-l-naphthyl-methylene)-l-pyrenamine (NPY) with the intermediate hydrogen bond. Results are comparable to experimentations. Based on results of both NPY and its model, N-(2-hydroxy-l-naphthyl-methylene)aniline, it was found that the N-(2-hydroxy-l-naphthyl-methylene) group is principally responsible for the special hydrogen bonding through conjugation effect.
文摘Vacuum diffusion bonding of a TiAl based alloy (TAD) to a titanium alloy (TC2) was carried out at 1 273 K for 15~120 min under a pressure of 25 MPa . The kinds of the reaction products and the interface structures of the joints were investigated by SEM, EPMA and XRD. Based on this, a formation mechanism of the interface structure was elucidated. Experimental and analytical results show that two reaction layers have formed during the diffusion bonding of TAD to TC2. One is Al rich α(Ti)layer adjacent to TC2,and the other is (Ti 3Al+TiAl)layer adjacent to TAD,thus the interface structure of the TAD/TC2 joints is TAD/(Ti 3Al+TiAl)/α(Ti)/TC2.This interface structure forms according to a three stage mechanism,namely(a)the occurrence of a single phase α(Ti)layer;(b)the occurrence of a duplex phase(Ti 3Al+TiAl)layer;and(c)the growth of the α(Ti)and (Ti 3Al+TiAl)layers.
文摘High temperature oxidation behavior of two kinds of nitride bonded SiC based refractories wtls bwestigated at I 100-1 .500℃ by means of X-ray di[fractometer, scanning electronic microscopy and thermogravimetry. The results show that : (1) with the temperature im'reasing, the oxidation mass increment rote of the specimen increases.first and then. decreases, and oxidation passi'va tion occttrs; (2) the oxidation resistance of SiAION bonded SiC refractories is superior to that of Si3N4 botlded SiC refractories ; (3) high temperature oxidtttion resuits itt the increase of compressive strength at room temperature of SiC based refractoviesiaes comlmred with specimen before oxidatiotl; the compressive strength of SIMON bonded SiC specimens oxidized at high temperatures decreases with the increase of the temperature as a result of formation amt burst of surfhce bubble, while the decrease of compressive strength of Sign4 bonded SiC specimens oxidized at high temperatures is owitng to the bwrease of the consistency of netlike crack assoeiated with cristobalite transfornuttion during cooling.
文摘The reaction of bis-[2-amino-4-pheny1-5-thiazolyl] disulfide with 5-nitro-salicylaldehyde in absolute ethanol resulted in the formation of a new Schiff base ligand H<sub>2</sub>L (1). Characterization of the ligand was performed by FT-IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, UV-Vis, elemental analysis and single crystal X-ray diffraction. The ligand, (1), possesses a disulfide –S–S– bridge of 2.1121 (3) ? length, and the molecule adopts a cis-conformation around this bond. In the crystal structure of (1), an intramolecular O–H···N hydrogen bond with D… A distance of 2.69 (3) ? was present. The reaction of (1) with Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O and CuCl<sub>2</sub>·2H<sub>2</sub>O in methanol afforded the corresponding metal complexes. The obtained solids were further investigated by elemental analysis and UV-Vis titration that confirmed the formation of [CoL] and [ClCuHL] complexes. However, recrystallizaion of the Co(II) complex in dimethylsulfoxide caused the complete hydrolysis of the imine bond and afforded a Co(II) complex in which two 5-nitro-salicylaldehyde and two DMSO molecules were coordinated to the central metal in an octahedral fashion. This structure (2) was also confirmed by single crystal X-ray analysis.
基金The paper is supported by country-level Spark Plan in 2003,project No.: 2003EA690034.
文摘A Ni-Cr-B-Si coating technique was developed and successfully applied on austenite grey iron substrate in a conventional resistance furnace under graphite powder protection. The microstructure, phase distribution, chemical composition profile and microhardness along the coating layer depth were investigated. Shear strength of the coating was also tested. Microanalysis shows that the coating is consist of γ-Ni solution and γ-Ni+Ni3B lamellar eutectic, as well as small amount of Cr5B3 particles. Diffusion induced metallurgical bonding occurs at the coating/substrate interfaces, and the higher the temperature, the more sufficient elements diffused, the broader interfusion region and the larger bonding strength, but it has an optimum value. And the bonding strength at the interface can be enable to reach 250-270 MPa, which is nearly the same as that of processed by flame spray. The microhardness along the coating layer depth shows a gradient distribution manner.
基金Supported by the Start-Up Funds of Xi’an Polytechnic University under Grant No BS1211the Scientific Research Program Funded by Shaanxi Provincial Education Department under Grant No 2013JK0679
文摘Based on the two-component relativistic effective core potential and matched basis sets cc-pwcvnz-pp (n=Q, 5), combining the completed basis-set extrapolation of electronic correlation energy and the fourth-order polynomial fitting technique, the bond length and spectroscopic constants of Hg2 are studied by the coupled cluster theory with spin-orbit coupling. Spin-orbit coupling is included in the post Hartree-Fock procedure, i.e., in the coupled- cluster iteration, to obtain more reliable theoretical results. The results show that our theoretical values agree with the experimental values very well and will be helpful to understand the spectral character of Hg2.
文摘The curing behavior of lignin-based phenol-formaldehyde (LPF) resin with different contents of nano-crystalline cellulose (NCC) was studied by differential scanning calorimetry (DSC) at different heating rates (5, 10 and 20°C/min) and the bonding property was evaluated by the wet shear strength and wood failure of two-ply plywood panels after soaking in water (48 hours at room temperature and followed by 1-hour boiling). The test results indicated that the NCC content had little influence on the peak temperature, activation energy and the total heat of reaction of LPF resin at 5 and 10°C/min. But at 20°C/min, LPF0.00% (LPF resin without NCC) showed the highest total heat of reaction, while LPF0.25% (LPF resin containing 0.25% NCC content) and LPF0.50% (LPF resin containing 0.50% NCC content) gave the lowest value. The wet shear strength was affected by the NCC content to a certain extent. With regard to the results of one-way analysis of variance, the bonding quality could be improved by NCC and the optimum NCC content ranged from 0.25% to 0.50%. The wood failure was also affected by the NCC content, but the trend with respect to NCC content was not clear.
文摘目的:采用两种临床常用粘接剂,对个性化机加工底板托槽、新型网底托槽、双向倒钩底板托槽和传统网底托槽的抗剪切强度(shear bond strength,SBS)进行比较研究,为临床个性化机加工托槽的粘接提供参考。方法:收集48颗新鲜人类前磨牙,随机分为8组。A、B组选用个性化机加工底板托槽,C、D组选用新型网底托槽,E、F组选用双向倒钩底板托槽,G、H组选用传统网底托槽;A、C、E、G组使用化学固化粘接剂,B、D、F、H组使用光固化粘接剂。在粘接实验前,在所有托槽中,每种托槽随机选1颗,对其底板在放大40倍、100倍的扫描电镜下进行观察并拍照。使用万能材料实验机,对每组托槽进行SBS的测定,并进行粘接剂残留量(adhesive remnant index,ARI)计分。结果:使用化学固化粘接剂时,其他3种托槽相比,双向倒钩底板托槽粘接强度较低,差异有统计学意义(P<0.05)。使用光固化粘接剂时,双向倒钩底板托槽粘接强度最低,新型网底托槽较低,传统网底托槽和个性化机加工底板托槽粘接强度最高,差异有统计学意义(P<0.05),传统网底托槽和个性化机加工底板托槽之间粘接强度无明显差异(P>0.05)。各组ARI计分差异有统计学意义(P<0.05),进一步比较可得:H组ARI计分最小,且H组与A组和E组的差异有统计学意义(P<0.05)。结论:个性化机加工底板托槽使用光固化粘接剂或使用化学固化粘接剂对其粘接强度无明显影响,粘接强度均能满足正畸临床粘接的要求。H组脱粘接断裂部位相对更接近牙釉质,其余各组牙釉质在脱粘接过程中损伤的风险较小。