Developing a robust computational strategy to address the rich physical characteristic involved in the thermcdynamic effects on the cryogenic cavitation remains a challenge in research. The objective of the present st...Developing a robust computational strategy to address the rich physical characteristic involved in the thermcdynamic effects on the cryogenic cavitation remains a challenge in research. The objective of the present study is to focus on developing mod- elling strategy to simulate cavitating flows in liquid nitrogen. For this purpose, numerical simulation over a 2D quarter caliber hydrofoil is investigated by calibrating cavitation model parameters and implementing the thermodynamic effects to the Zwart cavitation model. Experimental measurements of pressure and temperature are utilized to validate the extensional Zwart cavi- tation model. The results show that the cavitation dynamics characteristic under the cryogenic environment ale different from that under the isothermal conditions: the cryogenic case yields a substantially shorter cavity around the hydrofoil, and the pre- dicted pressure and temperature inside the cavity are steeper under the cryogenic conditions. Compared with the experimental data, the computational predictions with the modified evaporation and condensation parameters display better results than the default parameters from the room temperature liquids. Based on a wide range of computations and comparisons, the extension- al Zwart cavitation model may predict more accurately the quasi-steady cavitation over a hydrofoil in liquid nitrogen by pri- marily altering the evaporation rate near the leading edge and the condensation rate in the cavity closure region.展开更多
基金supported by the Natural Science Foundation of Heilongjiang Province of China(Grant No.A201409)the Special Fund Project for Technology Innovation Talent of Harbin(Grant No.2013RFLXJ007)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201159)
文摘Developing a robust computational strategy to address the rich physical characteristic involved in the thermcdynamic effects on the cryogenic cavitation remains a challenge in research. The objective of the present study is to focus on developing mod- elling strategy to simulate cavitating flows in liquid nitrogen. For this purpose, numerical simulation over a 2D quarter caliber hydrofoil is investigated by calibrating cavitation model parameters and implementing the thermodynamic effects to the Zwart cavitation model. Experimental measurements of pressure and temperature are utilized to validate the extensional Zwart cavi- tation model. The results show that the cavitation dynamics characteristic under the cryogenic environment ale different from that under the isothermal conditions: the cryogenic case yields a substantially shorter cavity around the hydrofoil, and the pre- dicted pressure and temperature inside the cavity are steeper under the cryogenic conditions. Compared with the experimental data, the computational predictions with the modified evaporation and condensation parameters display better results than the default parameters from the room temperature liquids. Based on a wide range of computations and comparisons, the extension- al Zwart cavitation model may predict more accurately the quasi-steady cavitation over a hydrofoil in liquid nitrogen by pri- marily altering the evaporation rate near the leading edge and the condensation rate in the cavity closure region.