期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Computational modeling of cavitating flows in liquid nitrogen by an extended transport-based cavitation model 被引量:6
1
作者 SUN TieZhi MA XiangFu +1 位作者 WEI YingJie WANG Cong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第2期337-346,共10页
Developing a robust computational strategy to address the rich physical characteristic involved in the thermcdynamic effects on the cryogenic cavitation remains a challenge in research. The objective of the present st... Developing a robust computational strategy to address the rich physical characteristic involved in the thermcdynamic effects on the cryogenic cavitation remains a challenge in research. The objective of the present study is to focus on developing mod- elling strategy to simulate cavitating flows in liquid nitrogen. For this purpose, numerical simulation over a 2D quarter caliber hydrofoil is investigated by calibrating cavitation model parameters and implementing the thermodynamic effects to the Zwart cavitation model. Experimental measurements of pressure and temperature are utilized to validate the extensional Zwart cavi- tation model. The results show that the cavitation dynamics characteristic under the cryogenic environment ale different from that under the isothermal conditions: the cryogenic case yields a substantially shorter cavity around the hydrofoil, and the pre- dicted pressure and temperature inside the cavity are steeper under the cryogenic conditions. Compared with the experimental data, the computational predictions with the modified evaporation and condensation parameters display better results than the default parameters from the room temperature liquids. Based on a wide range of computations and comparisons, the extension- al Zwart cavitation model may predict more accurately the quasi-steady cavitation over a hydrofoil in liquid nitrogen by pri- marily altering the evaporation rate near the leading edge and the condensation rate in the cavity closure region. 展开更多
关键词 extended transport.based cavitation model liquid nitrogen thermodynamic effects cavitating flows
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部