In the present study,the base pressure variations induced by the presence of a cavity,known to have a strong influence of the behaviour of supersonic projectiles,are investigated through numerical solution of the bala...In the present study,the base pressure variations induced by the presence of a cavity,known to have a strong influence of the behaviour of supersonic projectiles,are investigated through numerical solution of the balance equations for mass,momentum,and energy.An area ratio of four is considered and numerical simulations are carried out at Mach M=1.2,1.4,1.6,and 1.8 assuming no cavity or cavity locations 0.5D,1D,1.5D,and 2D.The inlet pressure of the nozzle is considered as a flow variable.The Taguchi method is also used,and the considered cases are then analyzed using a full factorial experimental design.The results show that the cavity is effective in increasing the base pressure for the conditions examined.For other nozzle pressure ratios,cavities do not lead to passive control due the change in the reattachment length.The distribution of wall pressure reveals that,in general,a cavity used to implement passive control of the base pressure does not adversely influence the flow pattern in the domain.展开更多
A method based on microjets is implemented to control the flow properties in a convergent-divergent nozzle undergoing a sudden expansion.Three different variants of this active control technique are explored numerical...A method based on microjets is implemented to control the flow properties in a convergent-divergent nozzle undergoing a sudden expansion.Three different variants of this active control technique are explored numerically by means of a finite-volume method for compressible fluid flow:with the first one,the control is implemented at the base,with the second at the wall,while the third one may be regarded as a combination of these.When jets are over-expanded,the control is not very effective.However,when a favourable pressure gradient is established in the nozzle,the control becomes effective,leading to an increase in the base pressure.展开更多
The minimization of base drag using mass bleed control is examined in consideration of various base to orifice exit area ratios for a body of revolution in the Mach 2.47 freestream Axisymmetric, compressible, rmss-ave...The minimization of base drag using mass bleed control is examined in consideration of various base to orifice exit area ratios for a body of revolution in the Mach 2.47 freestream Axisymmetric, compressible, rmss-averaged Navier-Stokes equations are solved using the standard k-ω model, a fully implicit finite volume scheme, and a second order upwind scheme. Base flow charcteristics are explained mgaarding the base configuration as well as the injection parameter which is defined as the mass flow rate of bleed jet non-dimensionalized by the product of the base area and fieestream mass flux. The results obtained through the present study show that for a smaller base area, the optimum mass bleed condition leading to minimum base drag occurs at relatively larger mass bleed, and a lalger orifice exit can offer better drag control.展开更多
Fine structures of supersonic flow over a 5 mm high backward facing step(BFS),including expansion wave fan,reattachment shock,supersonic boundary layer were measured in a Ma=3.0 low-noise indraft wind tunnel.By varyin...Fine structures of supersonic flow over a 5 mm high backward facing step(BFS),including expansion wave fan,reattachment shock,supersonic boundary layer were measured in a Ma=3.0 low-noise indraft wind tunnel.By varying the superficial roughness of the wall upstream from the step,supersonic laminar flow and supersonic turbulent flow could be formed over a BFS.Measurements on the spatiotemporal features of the holistic flow field and the fine structures in four typical regions were carried out using NPLS(nano-based planar laser scattering).Flow structures,including expansion wave fan,reattachment shock,supersonic boundary layer and its separation,reattachment and redevelopment are revealed by measuring the holistic structure of the transient flow field.Comparing the two time-averaged flow fields with each other,it is apparent that supersonic turbulent flow over a BFS(STF-BFS) has a larger expansion angle and a shorter recirculation region,and its redeveloped boundary layer increases at a smaller obliquity while the angle of reattachment shock is the same for the supersonic laminar flow over a BFS(SLF-BFS).With regard to time-evolution features,the K-H vortices in the SLF-BFS suffers from shearing,expansion,reattachment and three-dimensional effects while in the STF-BFS large-scale structures are affected by the incline and distortion at the reattachment point due to expansion,viscosity and reverse-pressure.Studies on local regions indicate that in the SLF-BFS,the emergence of compression waves which distinctly converge into a reattachment shock is due to the local convective Mach number and the inducement of K-H vortices in the free shear layer.Nevertheless,in the STF-BFS,compression waves and K-H vortices are barely evident,and the formation of a reattachment shock is related to the wall compressive effect.展开更多
The conventional car-following theory is based on the assumption that vehicles will travel along the center line of lanes. However, according to the field survey data, in complex traffic conditions, a lateral separati...The conventional car-following theory is based on the assumption that vehicles will travel along the center line of lanes. However, according to the field survey data, in complex traffic conditions, a lateral separation between the leader and the follower frequently occurs. Accordingly, by taking lateral separation into account, we redefined the equation of time-to-collision (TTC) using visual angle information. Based on the stimulus-response framework, TTC was introduced into the basic General Motors (GM) model as a stimulus, and a non-lane-based car-following model of steady-state traffic flow was developed. The property of flow-density relationship was further investigated after integrating the proposed car-following model with different parameters. The results imply that the property of steady-state traffic flow and the capacity of each lane are highly relevant to the microscopic staggered car-following behavior, and the proposed model significantly enhances the practicality of the human driving behavior model.展开更多
在马赫数3.8的超声速风洞中,以高时空分辨率的基于纳米示踪的平面激光散射(NPLS,Nano-tracer based Planar Laser Scattering)技术为实验手段,研究了有无喷流的超声速光学头罩流场的精细结构,清晰地再现了流场中的激波、膨胀波、剪切层...在马赫数3.8的超声速风洞中,以高时空分辨率的基于纳米示踪的平面激光散射(NPLS,Nano-tracer based Planar Laser Scattering)技术为实验手段,研究了有无喷流的超声速光学头罩流场的精细结构,清晰地再现了流场中的激波、膨胀波、剪切层和湍流边界层等复杂结构.通过分析时间相关的流场NPLS图像,可以发现流场结构随时间的演化特性.结果表明:无喷流情况下光学窗口上方的大部分流场处于层流状态;有喷流情况下剪切层的层流区域较短,在很短的距离内转捩至湍流状态;喷流出口压力高于外界压力情况下剪切层的转捩位置比压力匹配情况下较为靠前,光学窗口上方的涡结构也较为复杂.比较而言,后者对气动光学性能的影响更大.展开更多
文摘In the present study,the base pressure variations induced by the presence of a cavity,known to have a strong influence of the behaviour of supersonic projectiles,are investigated through numerical solution of the balance equations for mass,momentum,and energy.An area ratio of four is considered and numerical simulations are carried out at Mach M=1.2,1.4,1.6,and 1.8 assuming no cavity or cavity locations 0.5D,1D,1.5D,and 2D.The inlet pressure of the nozzle is considered as a flow variable.The Taguchi method is also used,and the considered cases are then analyzed using a full factorial experimental design.The results show that the cavity is effective in increasing the base pressure for the conditions examined.For other nozzle pressure ratios,cavities do not lead to passive control due the change in the reattachment length.The distribution of wall pressure reveals that,in general,a cavity used to implement passive control of the base pressure does not adversely influence the flow pattern in the domain.
基金supported by the Structures and Materials(S&M)Research Lab of Prince Sultan University.
文摘A method based on microjets is implemented to control the flow properties in a convergent-divergent nozzle undergoing a sudden expansion.Three different variants of this active control technique are explored numerically by means of a finite-volume method for compressible fluid flow:with the first one,the control is implemented at the base,with the second at the wall,while the third one may be regarded as a combination of these.When jets are over-expanded,the control is not very effective.However,when a favourable pressure gradient is established in the nozzle,the control becomes effective,leading to an increase in the base pressure.
文摘The minimization of base drag using mass bleed control is examined in consideration of various base to orifice exit area ratios for a body of revolution in the Mach 2.47 freestream Axisymmetric, compressible, rmss-averaged Navier-Stokes equations are solved using the standard k-ω model, a fully implicit finite volume scheme, and a second order upwind scheme. Base flow charcteristics are explained mgaarding the base configuration as well as the injection parameter which is defined as the mass flow rate of bleed jet non-dimensionalized by the product of the base area and fieestream mass flux. The results obtained through the present study show that for a smaller base area, the optimum mass bleed condition leading to minimum base drag occurs at relatively larger mass bleed, and a lalger orifice exit can offer better drag control.
文摘Fine structures of supersonic flow over a 5 mm high backward facing step(BFS),including expansion wave fan,reattachment shock,supersonic boundary layer were measured in a Ma=3.0 low-noise indraft wind tunnel.By varying the superficial roughness of the wall upstream from the step,supersonic laminar flow and supersonic turbulent flow could be formed over a BFS.Measurements on the spatiotemporal features of the holistic flow field and the fine structures in four typical regions were carried out using NPLS(nano-based planar laser scattering).Flow structures,including expansion wave fan,reattachment shock,supersonic boundary layer and its separation,reattachment and redevelopment are revealed by measuring the holistic structure of the transient flow field.Comparing the two time-averaged flow fields with each other,it is apparent that supersonic turbulent flow over a BFS(STF-BFS) has a larger expansion angle and a shorter recirculation region,and its redeveloped boundary layer increases at a smaller obliquity while the angle of reattachment shock is the same for the supersonic laminar flow over a BFS(SLF-BFS).With regard to time-evolution features,the K-H vortices in the SLF-BFS suffers from shearing,expansion,reattachment and three-dimensional effects while in the STF-BFS large-scale structures are affected by the incline and distortion at the reattachment point due to expansion,viscosity and reverse-pressure.Studies on local regions indicate that in the SLF-BFS,the emergence of compression waves which distinctly converge into a reattachment shock is due to the local convective Mach number and the inducement of K-H vortices in the free shear layer.Nevertheless,in the STF-BFS,compression waves and K-H vortices are barely evident,and the formation of a reattachment shock is related to the wall compressive effect.
基金Project supported by the National Natural Science Foundation of China (No. 70971053)the National High-Tech R&D Program (863) of China (No. 2011AA110304)the China Postdoctoral Science Foundation (No. 20100481419)
文摘The conventional car-following theory is based on the assumption that vehicles will travel along the center line of lanes. However, according to the field survey data, in complex traffic conditions, a lateral separation between the leader and the follower frequently occurs. Accordingly, by taking lateral separation into account, we redefined the equation of time-to-collision (TTC) using visual angle information. Based on the stimulus-response framework, TTC was introduced into the basic General Motors (GM) model as a stimulus, and a non-lane-based car-following model of steady-state traffic flow was developed. The property of flow-density relationship was further investigated after integrating the proposed car-following model with different parameters. The results imply that the property of steady-state traffic flow and the capacity of each lane are highly relevant to the microscopic staggered car-following behavior, and the proposed model significantly enhances the practicality of the human driving behavior model.
文摘在马赫数3.8的超声速风洞中,以高时空分辨率的基于纳米示踪的平面激光散射(NPLS,Nano-tracer based Planar Laser Scattering)技术为实验手段,研究了有无喷流的超声速光学头罩流场的精细结构,清晰地再现了流场中的激波、膨胀波、剪切层和湍流边界层等复杂结构.通过分析时间相关的流场NPLS图像,可以发现流场结构随时间的演化特性.结果表明:无喷流情况下光学窗口上方的大部分流场处于层流状态;有喷流情况下剪切层的层流区域较短,在很短的距离内转捩至湍流状态;喷流出口压力高于外界压力情况下剪切层的转捩位置比压力匹配情况下较为靠前,光学窗口上方的涡结构也较为复杂.比较而言,后者对气动光学性能的影响更大.