Stiffened structures have great potential for improvingmechanical performance,and the study of their stability is of great interest.In this paper,the optimization of the critical buckling load factor for curved grid s...Stiffened structures have great potential for improvingmechanical performance,and the study of their stability is of great interest.In this paper,the optimization of the critical buckling load factor for curved grid stiffeners is solved by using the level set based density method,where the shape and cross section(including thickness and width)of the stiffeners can be optimized simultaneously.The grid stiffeners are a combination ofmany single stiffenerswhich are projected by the corresponding level set functions.The thickness and width of each stiffener are designed to be independent variables in the projection applied to each level set function.Besides,the path of each single stiffener is described by the zero iso-contour of the level set function.All the single stiffeners are combined together by using the p-norm method to obtain the stiffener grid.The proposed method is validated by several numerical examples to optimize the critical buckling load factor.展开更多
Estimation of base level changes in geological records is an important topic for petroleum geologists.Taking the Paleocene Upper Lingfeng Member of Lishui Sag as an example,this paper conducted a base level reconstruc...Estimation of base level changes in geological records is an important topic for petroleum geologists.Taking the Paleocene Upper Lingfeng Member of Lishui Sag as an example,this paper conducted a base level reconstruction based on Basin Filling Modelling(BFM).The reconstruction was processed on the ground of a previously interpreted seismic stratigraphic framework with several assumptions and simplification.The BFM is implemented with a nonlinear diffusion equation solver written in R coding that excels in shallow marine stratigraphic simulation.The modeled results fit the original stratigraphy very well.The BFM is a powerful tool for reconstructing the base level,and is an effective way to check the reasonableness of previous interpretations.Although simulation solutions may not be unique,the BFM still provides us a chance to gain some insights into the mechanism and dynamic details of the stratigraphy of sedimentary basins.展开更多
Four kinds of Au nanorods(NRs)with different aspect ratios are designed to adjust the relationship between resonance energy level of longitudinal(L)and transverse(T)modes.During the femto-second Z-scan experimen...Four kinds of Au nanorods(NRs)with different aspect ratios are designed to adjust the relationship between resonance energy level of longitudinal(L)and transverse(T)modes.During the femto-second Z-scan experiments,huge saturable absorption phenomena are observed while the energy level T is located between one to two times of the energylevel L.This means that the energy may transfer between longitudinal and transverse energylevels in the same and/or different Au NRs.It effectively depresses the production of revised saturated absorption and increases the saturable absorption efficiency.This method is significant for the preparation of high-efficiency saturable absorption devices.展开更多
Building national human rights education and train- ing bases is part of China's human rights development,which shows the strong will of the Chinese government for promoting human fights and strengthening hu- man rig...Building national human rights education and train- ing bases is part of China's human rights development,which shows the strong will of the Chinese government for promoting human fights and strengthening hu- man rights protection. Such an action is not only a practical measure for implementing international human fights action plans, but also a practice of the Chinese government in re- specting and implementing relevant international obligations set by the United Nations.展开更多
Coupling within fluvial systems relates to the connectivity between the various components of the system. It can be viewed at several scales from local scales of hillslopetochannel and reachtoreach coupling, to larger...Coupling within fluvial systems relates to the connectivity between the various components of the system. It can be viewed at several scales from local scales of hillslopetochannel and reachtoreach coupling, to larger scales of zonal coupling between the major functional zones of the fluvial system, and to the scale of regional coupling. Coupling influences how the system responds to environmental change and how the effects of environmental change are propagated through the system. This paper provides a review, based largely on previously published work, of the coupling concept, and how the effective temporal scales vary with the spatial scale of coupling. Local scale coupling is considered through the hillslope to channel coupling in the Howgill Fells, northwest England, observed over a 30year monitoring period, together with examples from badlands in Spain, and reachtoreach coupling on the River Dane, northwest England. At the zonal scale the relative influence of climatic and baselevel change on coupling through dryregion alluvial fans is considered on fan systems in Spain, Nevada, and UAE/Oman. For large scale regional coupling, the response of the Tabernas basin, southeast Spain to tectonic uplift, is examined. The factors influencing coupling mechanisms vary with temporal and spatial scales. At the hillslopetochannel scale the significant factors are the magnitude and frequency characteristics of sediment generation and removal mechanisms within the context of progressive morphological change. Effective timescales range from the individual event to decadal timescales. At the zonal scale, that of alluvial fans, the significant factors are climatic change, and particularly in the appropriate morphological setting, baselevel change. Effective timescales are of the order of hundreds to thousands of years. At the regional scale, the response to tectonic uplift may take >100 ka to be transmitted through the drainage basin.展开更多
Previous researches had emphasized tectonic impacts on the fluvial system at the tectonically active areas,while the effects of lithology and local base level change have received relatively rare attention.Here we inv...Previous researches had emphasized tectonic impacts on the fluvial system at the tectonically active areas,while the effects of lithology and local base level change have received relatively rare attention.Here we investigated fluvial landforms at different spatial scales,focusing on knickpoints and channel network reorganization from an area affected by the Haiyuan Fault in the northeastern Tibetan Plateau.The geomorphic indices,i.e.,drainage pattern andχanomalies,were calculated and investigated.The results show that two regional radial drainages formed around the Laohu and Hasi Mountains.Within the interior of the radial drainage,tributaries from the southeast side of the Laohu Mountain experienced near 180°direction change.We interpret this as the gradual drainage capture originating from the height difference(~190 m)of the local base level between the two catchments.Some tributaries from the Hasi Mountain show alternating gorges and broad valleys controlled by lithology.Besides,tectonic uplift and the lowering of base level(from the incision of the Yellow River)triggered an autogenic positivefeedback transition from parallel to dendritic drainage patterns.These observations suggest that base level change and lithology play a crucial role in landscape evolution,even in a tectonically active region.展开更多
As one of the most important source rocks and reservoirs of unconventional natural gas, the sedimentary environment and mode of peat swamp(the predecessor of coal seam) is important to the coal seam's spatial distr...As one of the most important source rocks and reservoirs of unconventional natural gas, the sedimentary environment and mode of peat swamp(the predecessor of coal seam) is important to the coal seam's spatial distribution, material composition, hydrocarbon generation potential, reservoir physical properties, etc. To reveal the depositional characteristics and history of environmental change in a terrestrial basin during a period of peat accumulation, the Middle Jurassic aged #7 coal from Gaoquan in the Qaidam Basin(NW China) was investigated using sedimentology, maceral composition, geochemistry and sequence stratigraphy. Based on identification of the sedimentary shoreline break belt, wave energy depletion point and position of wave base, the peat swamp system can be subdivided into(1) lakeside plain,(2) low energy lakeshore,(3) high energy lakeshore, and(4) shallow lake subfacies. A new method for determining coal facies is proposed based on the combination of environmental parameters including oxidation-reduction levels, energy conditions and the influence of terrigneous sediments. The evolution of the coal seam shows that peat was deposited mainly in the low energy lakeshore and lakeside plain subfacies. Five types of sequence stratigrpahic surface and two types of parasequence were identified. Forced lake regressions and normal lake regressions are attributed as the causes of sequence boundaries. The sequence stratigraphic framework comprises six sequences and corresponding system tracts, and the curve of base-level for each demonstrates a characteristic initial period of slow rising followed by fast rising and then returning to slow rising. A model indicating the relationship among base-level changes, coal facies evolution, and the environmental features in the swamp is proposed that shows the environmental features of the swamp were controlled by both base-level changes and coal facies. Accompanying depositional environment changes from a lakeside plain to lakeshore and shallow lake caused by increasing rate of base-level rise, water paleosalinity, acidity and the percentage of woody plants decrease, and the bog type alters from the low marsh to raised bog.展开更多
In view of the high accuracy and predictability, high-resolution sequence stratigraphy had been extensively applied to oil exploration and gotten prominent practicable results. This article takes the first layer, uppe...In view of the high accuracy and predictability, high-resolution sequence stratigraphy had been extensively applied to oil exploration and gotten prominent practicable results. This article takes the first layer, upper second submember, Shahejie (沙河街) Formation from Pucheng (濮城) oilfield as an example to analyze the application of high-resolution sequence stratigraphy in reservoir study on the basis of a comprehensive study of core log data. Firstly, facies analysis of this area reveals the corresponding terminal fan system occurring where sediment-laden streams decrease in size and vanish as a result of evaporation and transmission losses. The model includes a tripartite zonation of terminal fan into feeder, distributary, and basinal zones. Secondly, electrofacies were made by well-log analysis and then matched with sedimentary facies defined by core analysis. Four electrofacies characterizing the main sedimentary facies association and depositional environments within target area are defined (channel, lag deposit, lake or flood-plain, and overflow deposits). Thirdly, related correlations based on high-resolution sequence stratigraphy were established. By observing the stacking arrangement of genetic sequences, different scales of stratigraphic cycle can be identified. Within scale and duration, the stratigraphic cycles are termed as genetic sequences, genetic sequence sets, and minor cycles.展开更多
The reservoirs within the Chang 8 Member of Yanchang (延长) Formation in the south- western Ordos basin are characterized by low permeability. It is significant to build a high-resolution sequence stratigraphic fram...The reservoirs within the Chang 8 Member of Yanchang (延长) Formation in the south- western Ordos basin are characterized by low permeability. It is significant to build a high-resolution sequence stratigraphic framework for the exploration and development of these reservoirs. Based on an integrated investigation of well logs, seismic data, cores and outcrops, the Chang 8 Member is interpreted as a 3rd-order transgressive-regressive (T-R) sequence, which consists of six 4th-order T-R se- quences, namely, K1, K2, K3, K4, K5 and K6, respectively, from base to top. Each 4th-order sequence comprises a transgressive systems tract overlain by a regressive systems tract. From K1 to transgressive systems tract of K4, it is characterized by the landward shifts of facies and overall retrogradational sequence stacking pattern due to accommodation increase more than sediment supply during the 3rd-order base-level rise. The distributary channels are mainly deposited in the transgressive systems tracts, and the interdistributary bays, sheet sands, and small-scale mouth bars are primarily developed in the regressive systems tracts in response to the 4th-order base-level fluctuations. From the regressivesystems tracts of K4 to K6, it is characterized by the basinward shifts of facies and overall progradational sequence stacking pattern because of accommodation increase less than sediment sup- ply during a fall in 3rd-order base level. The distributary channels are mainly accumulated in the transgressive systems tracts, and distributary channels and mouth bars are deposited in the regressive systems tracts as a result of the 4th-order base-level changes. Detailed stratigraphic and sedimentoiogical analyses indicate that sequences K1, K2, K5 and K6, as well as the basin edge of K3 and K4, remain potential for exploration and development due to their high reservoir quality in response to the low accommodation and more sediment supply.展开更多
Soil erosion in mountain rangelands in Kyrgyzstan is an emerging problem due to vegetation loss caused by overgrazing. It is further exacerbated by mountain terrain and high precipitation values in Fergana range in th...Soil erosion in mountain rangelands in Kyrgyzstan is an emerging problem due to vegetation loss caused by overgrazing. It is further exacerbated by mountain terrain and high precipitation values in Fergana range in the south of Kyrgyzstan. The main objective of this study was to map soil erodibility in the mountainous rangelands of Kyrgyzstan. The results of this effort are expected to contribute to the development of soil erodibility modelling approaches for mountainous areas. In this study, we mapped soil erodibility at two sites, both representing grazing rangelands in the mountains of Kyrgyzstan and having potentially different levels of grazing pressure. We collected a total of 232 soil samples evenly distributed in geographical space and feature space. Then we analyzed the samples in laboratory for grain size distribution and calculated soil erodibility values from these data using the Revised Universal Soil Loss Equation (RUSLE) K-factor formula. After that, we derived different terrain indices and ratios of frequency bands from ASTER GDEM and LANDSAT images to use as auxiliary data because they are among the main soil forming factors and widely used for prediction of various soil properties. Soil erodibility was significantly correlated with channel network base level (geographically extrapolated altitude of water channels), remotely sensed indices of short-wave infrared spectral bands, exposition, and slope degree. We applied multiple regression analysis to predict soil erodibility from spatially explicit terrain and remotely sensed indices. The final soil erodibility model was developed using the spatially explicit predictors and the regression equation and then improved by adding the residuals. The spatial resolution of the model was 30 m, and the estimated mean adjusted coefficient of determination was 0.47. The two sites indicated different estimated and predicted means of soil erodibility values (0.035 and 0.039) with a 0.05 significance level, which is attributed mainly to the considerable difference in elevation.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51975227 and 12272144).
文摘Stiffened structures have great potential for improvingmechanical performance,and the study of their stability is of great interest.In this paper,the optimization of the critical buckling load factor for curved grid stiffeners is solved by using the level set based density method,where the shape and cross section(including thickness and width)of the stiffeners can be optimized simultaneously.The grid stiffeners are a combination ofmany single stiffenerswhich are projected by the corresponding level set functions.The thickness and width of each stiffener are designed to be independent variables in the projection applied to each level set function.Besides,the path of each single stiffener is described by the zero iso-contour of the level set function.All the single stiffeners are combined together by using the p-norm method to obtain the stiffener grid.The proposed method is validated by several numerical examples to optimize the critical buckling load factor.
基金the Initial Fund for Young Scholars of Qingdao University of Science and Technology and the National Natural Science Foundation of China(No.51804325)。
文摘Estimation of base level changes in geological records is an important topic for petroleum geologists.Taking the Paleocene Upper Lingfeng Member of Lishui Sag as an example,this paper conducted a base level reconstruction based on Basin Filling Modelling(BFM).The reconstruction was processed on the ground of a previously interpreted seismic stratigraphic framework with several assumptions and simplification.The BFM is implemented with a nonlinear diffusion equation solver written in R coding that excels in shallow marine stratigraphic simulation.The modeled results fit the original stratigraphy very well.The BFM is a powerful tool for reconstructing the base level,and is an effective way to check the reasonableness of previous interpretations.Although simulation solutions may not be unique,the BFM still provides us a chance to gain some insights into the mechanism and dynamic details of the stratigraphy of sedimentary basins.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11404410 and 11504105the Hunan Provincial Natural Science Foundation under Grant No 2016JJ3140
文摘Four kinds of Au nanorods(NRs)with different aspect ratios are designed to adjust the relationship between resonance energy level of longitudinal(L)and transverse(T)modes.During the femto-second Z-scan experiments,huge saturable absorption phenomena are observed while the energy level T is located between one to two times of the energylevel L.This means that the energy may transfer between longitudinal and transverse energylevels in the same and/or different Au NRs.It effectively depresses the production of revised saturated absorption and increases the saturable absorption efficiency.This method is significant for the preparation of high-efficiency saturable absorption devices.
文摘Building national human rights education and train- ing bases is part of China's human rights development,which shows the strong will of the Chinese government for promoting human fights and strengthening hu- man rights protection. Such an action is not only a practical measure for implementing international human fights action plans, but also a practice of the Chinese government in re- specting and implementing relevant international obligations set by the United Nations.
文摘Coupling within fluvial systems relates to the connectivity between the various components of the system. It can be viewed at several scales from local scales of hillslopetochannel and reachtoreach coupling, to larger scales of zonal coupling between the major functional zones of the fluvial system, and to the scale of regional coupling. Coupling influences how the system responds to environmental change and how the effects of environmental change are propagated through the system. This paper provides a review, based largely on previously published work, of the coupling concept, and how the effective temporal scales vary with the spatial scale of coupling. Local scale coupling is considered through the hillslope to channel coupling in the Howgill Fells, northwest England, observed over a 30year monitoring period, together with examples from badlands in Spain, and reachtoreach coupling on the River Dane, northwest England. At the zonal scale the relative influence of climatic and baselevel change on coupling through dryregion alluvial fans is considered on fan systems in Spain, Nevada, and UAE/Oman. For large scale regional coupling, the response of the Tabernas basin, southeast Spain to tectonic uplift, is examined. The factors influencing coupling mechanisms vary with temporal and spatial scales. At the hillslopetochannel scale the significant factors are the magnitude and frequency characteristics of sediment generation and removal mechanisms within the context of progressive morphological change. Effective timescales range from the individual event to decadal timescales. At the zonal scale, that of alluvial fans, the significant factors are climatic change, and particularly in the appropriate morphological setting, baselevel change. Effective timescales are of the order of hundreds to thousands of years. At the regional scale, the response to tectonic uplift may take >100 ka to be transmitted through the drainage basin.
基金supported by the National Natural Science Foundation of China(Grant Nos.41971005,41522101)the Second Tibetan Plateau Scientific Expedition Program(Grant No.2019QZKK0205)the National Key Research and Development Program(Grant No.2016YFA0600500)。
文摘Previous researches had emphasized tectonic impacts on the fluvial system at the tectonically active areas,while the effects of lithology and local base level change have received relatively rare attention.Here we investigated fluvial landforms at different spatial scales,focusing on knickpoints and channel network reorganization from an area affected by the Haiyuan Fault in the northeastern Tibetan Plateau.The geomorphic indices,i.e.,drainage pattern andχanomalies,were calculated and investigated.The results show that two regional radial drainages formed around the Laohu and Hasi Mountains.Within the interior of the radial drainage,tributaries from the southeast side of the Laohu Mountain experienced near 180°direction change.We interpret this as the gradual drainage capture originating from the height difference(~190 m)of the local base level between the two catchments.Some tributaries from the Hasi Mountain show alternating gorges and broad valleys controlled by lithology.Besides,tectonic uplift and the lowering of base level(from the incision of the Yellow River)triggered an autogenic positivefeedback transition from parallel to dendritic drainage patterns.These observations suggest that base level change and lithology play a crucial role in landscape evolution,even in a tectonically active region.
基金the National Natural Science Foundation of China (Nos. 41472131, 41772161)New Century Excellent Talents Fund of Chinese Ministry of Education (No. 2013102050020)
文摘As one of the most important source rocks and reservoirs of unconventional natural gas, the sedimentary environment and mode of peat swamp(the predecessor of coal seam) is important to the coal seam's spatial distribution, material composition, hydrocarbon generation potential, reservoir physical properties, etc. To reveal the depositional characteristics and history of environmental change in a terrestrial basin during a period of peat accumulation, the Middle Jurassic aged #7 coal from Gaoquan in the Qaidam Basin(NW China) was investigated using sedimentology, maceral composition, geochemistry and sequence stratigraphy. Based on identification of the sedimentary shoreline break belt, wave energy depletion point and position of wave base, the peat swamp system can be subdivided into(1) lakeside plain,(2) low energy lakeshore,(3) high energy lakeshore, and(4) shallow lake subfacies. A new method for determining coal facies is proposed based on the combination of environmental parameters including oxidation-reduction levels, energy conditions and the influence of terrigneous sediments. The evolution of the coal seam shows that peat was deposited mainly in the low energy lakeshore and lakeside plain subfacies. Five types of sequence stratigrpahic surface and two types of parasequence were identified. Forced lake regressions and normal lake regressions are attributed as the causes of sequence boundaries. The sequence stratigraphic framework comprises six sequences and corresponding system tracts, and the curve of base-level for each demonstrates a characteristic initial period of slow rising followed by fast rising and then returning to slow rising. A model indicating the relationship among base-level changes, coal facies evolution, and the environmental features in the swamp is proposed that shows the environmental features of the swamp were controlled by both base-level changes and coal facies. Accompanying depositional environment changes from a lakeside plain to lakeshore and shallow lake caused by increasing rate of base-level rise, water paleosalinity, acidity and the percentage of woody plants decrease, and the bog type alters from the low marsh to raised bog.
基金supported by the National Key Technology R&D Program (No. 2006BAC18B05)
文摘In view of the high accuracy and predictability, high-resolution sequence stratigraphy had been extensively applied to oil exploration and gotten prominent practicable results. This article takes the first layer, upper second submember, Shahejie (沙河街) Formation from Pucheng (濮城) oilfield as an example to analyze the application of high-resolution sequence stratigraphy in reservoir study on the basis of a comprehensive study of core log data. Firstly, facies analysis of this area reveals the corresponding terminal fan system occurring where sediment-laden streams decrease in size and vanish as a result of evaporation and transmission losses. The model includes a tripartite zonation of terminal fan into feeder, distributary, and basinal zones. Secondly, electrofacies were made by well-log analysis and then matched with sedimentary facies defined by core analysis. Four electrofacies characterizing the main sedimentary facies association and depositional environments within target area are defined (channel, lag deposit, lake or flood-plain, and overflow deposits). Thirdly, related correlations based on high-resolution sequence stratigraphy were established. By observing the stacking arrangement of genetic sequences, different scales of stratigraphic cycle can be identified. Within scale and duration, the stratigraphic cycles are termed as genetic sequences, genetic sequence sets, and minor cycles.
基金supported by the National Natural Science Foundation of China (No. 40702024)
文摘The reservoirs within the Chang 8 Member of Yanchang (延长) Formation in the south- western Ordos basin are characterized by low permeability. It is significant to build a high-resolution sequence stratigraphic framework for the exploration and development of these reservoirs. Based on an integrated investigation of well logs, seismic data, cores and outcrops, the Chang 8 Member is interpreted as a 3rd-order transgressive-regressive (T-R) sequence, which consists of six 4th-order T-R se- quences, namely, K1, K2, K3, K4, K5 and K6, respectively, from base to top. Each 4th-order sequence comprises a transgressive systems tract overlain by a regressive systems tract. From K1 to transgressive systems tract of K4, it is characterized by the landward shifts of facies and overall retrogradational sequence stacking pattern due to accommodation increase more than sediment supply during the 3rd-order base-level rise. The distributary channels are mainly deposited in the transgressive systems tracts, and the interdistributary bays, sheet sands, and small-scale mouth bars are primarily developed in the regressive systems tracts in response to the 4th-order base-level fluctuations. From the regressivesystems tracts of K4 to K6, it is characterized by the basinward shifts of facies and overall progradational sequence stacking pattern because of accommodation increase less than sediment sup- ply during a fall in 3rd-order base level. The distributary channels are mainly accumulated in the transgressive systems tracts, and distributary channels and mouth bars are deposited in the regressive systems tracts as a result of the 4th-order base-level changes. Detailed stratigraphic and sedimentoiogical analyses indicate that sequences K1, K2, K5 and K6, as well as the basin edge of K3 and K4, remain potential for exploration and development due to their high reservoir quality in response to the low accommodation and more sediment supply.
基金a part of a joint Kyrgyz-German research project “The Impact of the Transformation Process on Human-Environment Interactions in Southern Kyrgyzstan”, funded by the Volkswagen Foundation, Germany, which had no impact on research or result dissemination
文摘Soil erosion in mountain rangelands in Kyrgyzstan is an emerging problem due to vegetation loss caused by overgrazing. It is further exacerbated by mountain terrain and high precipitation values in Fergana range in the south of Kyrgyzstan. The main objective of this study was to map soil erodibility in the mountainous rangelands of Kyrgyzstan. The results of this effort are expected to contribute to the development of soil erodibility modelling approaches for mountainous areas. In this study, we mapped soil erodibility at two sites, both representing grazing rangelands in the mountains of Kyrgyzstan and having potentially different levels of grazing pressure. We collected a total of 232 soil samples evenly distributed in geographical space and feature space. Then we analyzed the samples in laboratory for grain size distribution and calculated soil erodibility values from these data using the Revised Universal Soil Loss Equation (RUSLE) K-factor formula. After that, we derived different terrain indices and ratios of frequency bands from ASTER GDEM and LANDSAT images to use as auxiliary data because they are among the main soil forming factors and widely used for prediction of various soil properties. Soil erodibility was significantly correlated with channel network base level (geographically extrapolated altitude of water channels), remotely sensed indices of short-wave infrared spectral bands, exposition, and slope degree. We applied multiple regression analysis to predict soil erodibility from spatially explicit terrain and remotely sensed indices. The final soil erodibility model was developed using the spatially explicit predictors and the regression equation and then improved by adding the residuals. The spatial resolution of the model was 30 m, and the estimated mean adjusted coefficient of determination was 0.47. The two sites indicated different estimated and predicted means of soil erodibility values (0.035 and 0.039) with a 0.05 significance level, which is attributed mainly to the considerable difference in elevation.