A new approach for assembling amperometric mushroom pulp tissue based membrane electrode for determination of L tyrosine analysis is proposed. Ferrocene is used as a mediator of electron transfer between tyrosinase ...A new approach for assembling amperometric mushroom pulp tissue based membrane electrode for determination of L tyrosine analysis is proposed. Ferrocene is used as a mediator of electron transfer between tyrosinase in mushroom tissue and a graphite electrode. The optimal operation conditions are studied. The linear response range of the biosensor is 2 0×10 -4 to 4 5×10 -3 mol·L -1 with response time of less than 5 min and lifetime of at least 30 d. The biosensor can be applied to practical sample analysis.展开更多
Graphitic carbon nitride(g-C_(3)N_(4))nanosheets have attracted widespread interest in the construction of advanced separation membranes.However,dense stacking and a single functionality have limited the membrane deve...Graphitic carbon nitride(g-C_(3)N_(4))nanosheets have attracted widespread interest in the construction of advanced separation membranes.However,dense stacking and a single functionality have limited the membrane development.Here,an advanced two-/three-dimensional(2D/3D)g-C_(3)N_(4)/TiO_(2)@MnO_(2) membrane is constructed by intercalating 3D TiO_(2)@MnO_(2) nanostructures into g-C_(3)N_(4) nanosheets.The 3D flower-like nanostructures broaden the transport channels of the composite membrane.The membrane can effectively separate five oil-in-water(O/W)emulsions,with a maximum flux of 3265.67±15.01 L·m^(-2)·h^(-1)·bar^(-1) and a maximum efficiency of 99.69%±0.45%for toluene-in-water emulsion(T/W).Meanwhile,the TiO_(2)@MnO_(2) acts as an excellent electron acceptor and provides positive spatial separation of electrons–holes(e^(-)–h^(+)).The formation of 2D/3D heterojunctions allows the material with wider light absorption and smaller bandgap(2.10 eV).These photoelectric properties give the membrane good degradation of three different pollutants,with about 100%degradation for methylene blue(MB)and malachite green(MG).The photocatalytic antibacterial efficiency of the membrane is also about 100%.After cyclic experiment,the membrane maintains its original separation and photocatalytic capabilities.The remarkable multifunctional and self-cleaning properties of the g-C_(3)N_(4) based membrane represent its potential value for complex wastewater treatment.展开更多
Biochar(BC)has exhibited a great potential to remove water contaminants due to its wide availability of raw materials,high surface area,developed pore structure,and low cost.However,the application of BC for water rem...Biochar(BC)has exhibited a great potential to remove water contaminants due to its wide availability of raw materials,high surface area,developed pore structure,and low cost.However,the application of BC for water remediation has many limita-tions.Driven by the intense desire of overcoming unfavorable factors,a growing number of researchers have carried out to produce BC-based composite materials,which not only improved the physicochemical properties of BC,but also obtained a new composite material which combined the advantages of BC and other materials.This article reviewed previous researches on BC and BC-based composite materials,and discussed in terms of the preparation methods,the physicochemical properties,the performance of contaminant removal,and underlying adsorption mechanisms.Then the recent research progress in the removal of inorganic and organic contaminants by BC and BC-based materials was also systematically reviewed.Although BC-based composite materials have shown high performance in inorganic or organic pollutants removal,the potential risks(such as stability and biological toxicity)still need to be noticed and further study.At the end of this review,future prospects for the synthesis and application of BC and BC-based materials were proposed.This review will help the new researchers systematically understand the research progress of BC and BC-based composite materials in environmental remediation.展开更多
文摘A new approach for assembling amperometric mushroom pulp tissue based membrane electrode for determination of L tyrosine analysis is proposed. Ferrocene is used as a mediator of electron transfer between tyrosinase in mushroom tissue and a graphite electrode. The optimal operation conditions are studied. The linear response range of the biosensor is 2 0×10 -4 to 4 5×10 -3 mol·L -1 with response time of less than 5 min and lifetime of at least 30 d. The biosensor can be applied to practical sample analysis.
基金supported by the Fundamental Research Funds for the Central Universities,CHD(Nos.300102312403 and 300102313208)the Shaanxi Key Research&Development Project(No.2022GY-403)+1 种基金the Innovation Capability Support Program of Shaanxi(No.2023-CX-TD-43)the China Postdoctoral Science Foundation(No.2020M683395).
文摘Graphitic carbon nitride(g-C_(3)N_(4))nanosheets have attracted widespread interest in the construction of advanced separation membranes.However,dense stacking and a single functionality have limited the membrane development.Here,an advanced two-/three-dimensional(2D/3D)g-C_(3)N_(4)/TiO_(2)@MnO_(2) membrane is constructed by intercalating 3D TiO_(2)@MnO_(2) nanostructures into g-C_(3)N_(4) nanosheets.The 3D flower-like nanostructures broaden the transport channels of the composite membrane.The membrane can effectively separate five oil-in-water(O/W)emulsions,with a maximum flux of 3265.67±15.01 L·m^(-2)·h^(-1)·bar^(-1) and a maximum efficiency of 99.69%±0.45%for toluene-in-water emulsion(T/W).Meanwhile,the TiO_(2)@MnO_(2) acts as an excellent electron acceptor and provides positive spatial separation of electrons–holes(e^(-)–h^(+)).The formation of 2D/3D heterojunctions allows the material with wider light absorption and smaller bandgap(2.10 eV).These photoelectric properties give the membrane good degradation of three different pollutants,with about 100%degradation for methylene blue(MB)and malachite green(MG).The photocatalytic antibacterial efficiency of the membrane is also about 100%.After cyclic experiment,the membrane maintains its original separation and photocatalytic capabilities.The remarkable multifunctional and self-cleaning properties of the g-C_(3)N_(4) based membrane represent its potential value for complex wastewater treatment.
基金The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China(Grant No.41807468)Zhejiang Provincial Natural Science Foundation of China(Grant No.LY18E080018)State Key Laboratory of Pollution Control and Resource Reuse Foundation(Grant No.PCRRF18021).
文摘Biochar(BC)has exhibited a great potential to remove water contaminants due to its wide availability of raw materials,high surface area,developed pore structure,and low cost.However,the application of BC for water remediation has many limita-tions.Driven by the intense desire of overcoming unfavorable factors,a growing number of researchers have carried out to produce BC-based composite materials,which not only improved the physicochemical properties of BC,but also obtained a new composite material which combined the advantages of BC and other materials.This article reviewed previous researches on BC and BC-based composite materials,and discussed in terms of the preparation methods,the physicochemical properties,the performance of contaminant removal,and underlying adsorption mechanisms.Then the recent research progress in the removal of inorganic and organic contaminants by BC and BC-based materials was also systematically reviewed.Although BC-based composite materials have shown high performance in inorganic or organic pollutants removal,the potential risks(such as stability and biological toxicity)still need to be noticed and further study.At the end of this review,future prospects for the synthesis and application of BC and BC-based materials were proposed.This review will help the new researchers systematically understand the research progress of BC and BC-based composite materials in environmental remediation.