Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the ...Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the Schottky barrier diode detector in the terahertz frequency band (90–140GHz). Based on the computed tomography technique, the three-dimensional image of a ceramic sample is reconstructed successfully by stacking the slices at different heights. The imaging results not only indicate the ability of terahertz wave in the non-invasive sensing and non-destructive inspection applications, but also prove the effectiveness and superiority of the uni-traveling-carrier photodiode as a terahertz source in the imaging applications.展开更多
Caused by the environment clutter,the radar false alarm plots are unavoidable.Suppressing false alarm points has always been a key issue in Radar plots procession.In this paper,a radar false alarm plots elimination me...Caused by the environment clutter,the radar false alarm plots are unavoidable.Suppressing false alarm points has always been a key issue in Radar plots procession.In this paper,a radar false alarm plots elimination method based on multi-feature extraction and classification is proposed to effectively eliminate false alarm plots.Firstly,the density based spatial clustering of applications with noise(DBSCAN)algorithm is used to cluster the radar echo data processed by constant false-alarm rate(CFAR).The multi-features including the scale features,time domain features and transform domain features are extracted.Secondly,a feature evaluation method combining pearson correlation coefficient(PCC)and entropy weight method(EWM)is proposed to evaluate interrelation among features,effective feature combination sets are selected as inputs of the classifier.Finally,False alarm plots classified as clutters are eliminated.The experimental results show that proposed method can eliminate about 90%false alarm plots with less target loss rate.展开更多
The spatial matrix filter was designed and used for solving the problem to detect a weak target who was influenced by the strong nearby platform noise interference of the towed line array sonar. The MFP technology and...The spatial matrix filter was designed and used for solving the problem to detect a weak target who was influenced by the strong nearby platform noise interference of the towed line array sonar. The MFP technology and the DOA estimation technology were combined together by using the sound propagation characteristics of both target and interference. The spatial matrix filter with platform noise zero response constraint was designed by the near-field platform noise normal modes copy vectors and the far-field plane wave bearing vectors together. The optimal solution of the optimization problem for designing the spatial matrix filter was deduced directly, and it was simplified by the generalized singular value decomposition. The total response error to the plane wave bearing vectors and the total response to the platform noise copy vectors were given. The phenomena that strong interferences existed in the bearing course and blind areas existed after filtering were analyzed by the correlation between the plat- form noise copy vectors and the plane wave bearing vectors. It could be found from simulations that it has less blind area and higher detection ability by using the spatial matrix filtering technology.展开更多
In this Letter, a method based on the effects of imperfect oscillators in lasers is proposed to distinguish targets in continuous wave tracking lidar. This technique is based on the fact that each lidar signal source ...In this Letter, a method based on the effects of imperfect oscillators in lasers is proposed to distinguish targets in continuous wave tracking lidar. This technique is based on the fact that each lidar signal source has a specific influence on the phase noise that makes real targets from the false ones. A simulated signal is produced by complex circuits, modulators, memory, and signal oscillators. For example, a deception laser beam has an unequal and variable phase noise from a real target. Thus, the phase noise of transmitted and received signals does not have the same power levels and patterns. To consider the performance of the suggested method, the probability of detection(PD) is shown for various signal-to-noise ratios and signal-to-jammer ratios based on experimental outcomes.展开更多
A large planar microphone array, which consists of 111 microphones, was successfully developed. The positions of 111 microphones in the array were determined by a random optimization procedure for the largest possible...A large planar microphone array, which consists of 111 microphones, was successfully developed. The positions of 111 microphones in the array were determined by a random optimization procedure for the largest possible amplification and dynamic range. The beam pattern of planar array was obtained by numerical calculation. This planar array was applied to measure a two-dimensional mapping of the sound sources on landing aircraft. It is shown that important airframe noise sources can be identified. The spectra and directivity of any interested noise source can also be obtained by this measurement.展开更多
A flexible polarization demultiplexing method based on an adaptive Kalman filter(AKF) is proposed in which the process noise covariance has been estimated adaptively. The proposed method may significantly improve th...A flexible polarization demultiplexing method based on an adaptive Kalman filter(AKF) is proposed in which the process noise covariance has been estimated adaptively. The proposed method may significantly improve the adaptive capability of an extended Kalman filter(EKF) by adaptively estimating the unknown process noise covariance. Compared to the conventional EKF, the proposed method can avoid the tedious and time consuming parameter-by-parameter tuning operations. The effectiveness of this method is confirmed experimentally in 128 Gb/s 16 QAM polarization-division-multiplexing(PDM) coherent optical transmission systems. The results illustrate that our proposed AKF has a better tracking accuracy and a faster convergence(about 4 times quicker)compared to a conventional algorithm with optimal process noise covariance.展开更多
The general corrosion and local corrosion of Q235 steel were tested by acoustic emission (AE) detecting system under 6% FeCl3.6H2O solution to effectively detect the corrosion acoustic emission signal from complex b...The general corrosion and local corrosion of Q235 steel were tested by acoustic emission (AE) detecting system under 6% FeCl3.6H2O solution to effectively detect the corrosion acoustic emission signal from complex background noise. The short-time fractal dimension and discrete fractional cosine transform methods are combined to reduce noise. The input SNR is 0-15 dB while corrosion acoustic emission signals being added with white noise, color noise and pink noise respectively. The results show that the output signal-to-noise ratio is improved by up to 8 dB compared with discrete cosine transform and discrete fractional cosine transform. The above-mentioned noise reduction method is of significance for the identification of corrosion induced acoustic emission signals and the evaluation of the metal remaining life.展开更多
An improved localization method consisting of "filtering-time delay estimationhyperbolic localization" is proposed. Combining the empirical mode decomposition(EMD)and time delay estimation method based on generali...An improved localization method consisting of "filtering-time delay estimationhyperbolic localization" is proposed. Combining the empirical mode decomposition(EMD)and time delay estimation method based on generalized average magnitude difference function,the original signals are decomposed into intrinsic mode function(IMF) components. The energy distribution criterion and spectrum consistency criterion are used to select the IMFs, which can represent the physical characteristics of the source signal. Several sets of signals are applied to estimate the time delay, and then a vector matching criterion is proposed to select the correct time delay estimation. Considering the hydrophones location, a shell model is established and projected to a plane according to the quadrant before the hyperbolic localization. Results of mooring and sailing tests show that the proposed method improves the localization accuracy,and reduces the error caused by time delay estimation.展开更多
基金Supported by the Hundred Talents Program of Chinese Academy of Sciencesthe National Basic Research Program of China under Grant No 2014CB339803+2 种基金the Major National Development Project of Scientific Instrument and Equipment under Grant No2011YQ150021the National Natural Science Foundation of China under Grant Nos 61575214,61574155,61404149 and 61404150the Shanghai Municipal Commission of Science and Technology under Grant Nos 14530711300,15560722000 and 15ZR1447500
文摘Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the Schottky barrier diode detector in the terahertz frequency band (90–140GHz). Based on the computed tomography technique, the three-dimensional image of a ceramic sample is reconstructed successfully by stacking the slices at different heights. The imaging results not only indicate the ability of terahertz wave in the non-invasive sensing and non-destructive inspection applications, but also prove the effectiveness and superiority of the uni-traveling-carrier photodiode as a terahertz source in the imaging applications.
文摘Caused by the environment clutter,the radar false alarm plots are unavoidable.Suppressing false alarm points has always been a key issue in Radar plots procession.In this paper,a radar false alarm plots elimination method based on multi-feature extraction and classification is proposed to effectively eliminate false alarm plots.Firstly,the density based spatial clustering of applications with noise(DBSCAN)algorithm is used to cluster the radar echo data processed by constant false-alarm rate(CFAR).The multi-features including the scale features,time domain features and transform domain features are extracted.Secondly,a feature evaluation method combining pearson correlation coefficient(PCC)and entropy weight method(EWM)is proposed to evaluate interrelation among features,effective feature combination sets are selected as inputs of the classifier.Finally,False alarm plots classified as clutters are eliminated.The experimental results show that proposed method can eliminate about 90%false alarm plots with less target loss rate.
基金supported by the National Natural Science Foundation of China(60532040,11374001)
文摘The spatial matrix filter was designed and used for solving the problem to detect a weak target who was influenced by the strong nearby platform noise interference of the towed line array sonar. The MFP technology and the DOA estimation technology were combined together by using the sound propagation characteristics of both target and interference. The spatial matrix filter with platform noise zero response constraint was designed by the near-field platform noise normal modes copy vectors and the far-field plane wave bearing vectors together. The optimal solution of the optimization problem for designing the spatial matrix filter was deduced directly, and it was simplified by the generalized singular value decomposition. The total response error to the plane wave bearing vectors and the total response to the platform noise copy vectors were given. The phenomena that strong interferences existed in the bearing course and blind areas existed after filtering were analyzed by the correlation between the plat- form noise copy vectors and the plane wave bearing vectors. It could be found from simulations that it has less blind area and higher detection ability by using the spatial matrix filtering technology.
文摘In this Letter, a method based on the effects of imperfect oscillators in lasers is proposed to distinguish targets in continuous wave tracking lidar. This technique is based on the fact that each lidar signal source has a specific influence on the phase noise that makes real targets from the false ones. A simulated signal is produced by complex circuits, modulators, memory, and signal oscillators. For example, a deception laser beam has an unequal and variable phase noise from a real target. Thus, the phase noise of transmitted and received signals does not have the same power levels and patterns. To consider the performance of the suggested method, the probability of detection(PD) is shown for various signal-to-noise ratios and signal-to-jammer ratios based on experimental outcomes.
基金the Bundesministerium fur Bildung und Forschung (BMBF) of Germany.
文摘A large planar microphone array, which consists of 111 microphones, was successfully developed. The positions of 111 microphones in the array were determined by a random optimization procedure for the largest possible amplification and dynamic range. The beam pattern of planar array was obtained by numerical calculation. This planar array was applied to measure a two-dimensional mapping of the sound sources on landing aircraft. It is shown that important airframe noise sources can be identified. The spectra and directivity of any interested noise source can also be obtained by this measurement.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.61335005,61325023,and 61401378)
文摘A flexible polarization demultiplexing method based on an adaptive Kalman filter(AKF) is proposed in which the process noise covariance has been estimated adaptively. The proposed method may significantly improve the adaptive capability of an extended Kalman filter(EKF) by adaptively estimating the unknown process noise covariance. Compared to the conventional EKF, the proposed method can avoid the tedious and time consuming parameter-by-parameter tuning operations. The effectiveness of this method is confirmed experimentally in 128 Gb/s 16 QAM polarization-division-multiplexing(PDM) coherent optical transmission systems. The results illustrate that our proposed AKF has a better tracking accuracy and a faster convergence(about 4 times quicker)compared to a conventional algorithm with optimal process noise covariance.
文摘The general corrosion and local corrosion of Q235 steel were tested by acoustic emission (AE) detecting system under 6% FeCl3.6H2O solution to effectively detect the corrosion acoustic emission signal from complex background noise. The short-time fractal dimension and discrete fractional cosine transform methods are combined to reduce noise. The input SNR is 0-15 dB while corrosion acoustic emission signals being added with white noise, color noise and pink noise respectively. The results show that the output signal-to-noise ratio is improved by up to 8 dB compared with discrete cosine transform and discrete fractional cosine transform. The above-mentioned noise reduction method is of significance for the identification of corrosion induced acoustic emission signals and the evaluation of the metal remaining life.
基金supported by the National Natural Science Foundation of China(51209214)the Research Development Foundation of Naval University of Engineering(425517K031)
文摘An improved localization method consisting of "filtering-time delay estimationhyperbolic localization" is proposed. Combining the empirical mode decomposition(EMD)and time delay estimation method based on generalized average magnitude difference function,the original signals are decomposed into intrinsic mode function(IMF) components. The energy distribution criterion and spectrum consistency criterion are used to select the IMFs, which can represent the physical characteristics of the source signal. Several sets of signals are applied to estimate the time delay, and then a vector matching criterion is proposed to select the correct time delay estimation. Considering the hydrophones location, a shell model is established and projected to a plane according to the quadrant before the hyperbolic localization. Results of mooring and sailing tests show that the proposed method improves the localization accuracy,and reduces the error caused by time delay estimation.