Currently,the major challenge in terms of research on K-ion batteries is to ensure that they possess satisfactory cycle stability and specific capacity,especially in terms of the intrinsically sluggish kinetics induce...Currently,the major challenge in terms of research on K-ion batteries is to ensure that they possess satisfactory cycle stability and specific capacity,especially in terms of the intrinsically sluggish kinetics induced by the large radius of K+ions.Here,we explore high-performance K-ion half/full batteries with high rate capability,high specific capacity,and extremely durable cycle stability based on carbon nanosheets with tailored N dopants,which can alleviate the change of volume,increase electronic conductivity,and enhance the K+ion adsorption.The as-assembled K-ion half-batteries show an excellent rate capability of 468 mA h g^(−1) at 100 mA g^(−1),which is superior to those of most carbon materials reported to date.Moreover,the as-assembled half-cells have an outstanding life span,running 40,000 cycles over 8 months with a specific capacity retention of 100%at a high current density of 2000 mA g^(−1),and the target full cells deliver a high reversible specific capacity of 146 mA h g^(−1) after 2000 cycles over 2 months,with a specific capacity retention of 113%at a high current density of 500 mA g^(−1),both of which are state of the art in the field of K-ion batteries.This study might provide some insights into and potential avenues for exploration of advanced K-ion batteries with durable stability for practical applications.展开更多
The existing researches of stepless capacity regulation system by depressing the suction valve for reciprocation compressor always adopt hypothesis that the compressor valves are open or close instantaneously, the val...The existing researches of stepless capacity regulation system by depressing the suction valve for reciprocation compressor always adopt hypothesis that the compressor valves are open or close instantaneously, the valve dynamic has not been taken account into thermal cycle computation, the influence of capacity regulation system on suction valves dynamic performance and cylinder thermal cycle operation has not been considered. This paper focuses on theoretical and experimental analysis of the valve dynamic and thermal cycle for reciprocating compressor in the situation of stepless capacity regulation. The valve dynamics equation, gas forces for normal and back flow, and the cylinder pressure varying with suction valve unloader moment during compression thermal cycle are discussed. A new valve dynamic model based on L-K real gas state equation for reciprocating compressor is first deduced to reduce the calculation errors induced by the ideal gas state equation. The variations of valve dynamic and cylinder pressure during part of compression stroke are calculated numerically. The calculation results reveal the non-normal thermal cycle and operation condition of compressor in stepless capacity regulation situation. The numerical simulation results of the valve dynamic and thermal cycle parameters are also verified by the stepless capacity regulation experiments in the type of 3L-10/8 reciprocating compressor. The experimental results agree with the numerical simulation results, which show that the theoretical models proposed are effective and high-precision. The proposed theoretical models build the theoretical foundation to design the real stepless capacity regulation system.展开更多
The ever-increasing demands for modern energy storage applications drive the search for novel anode materials of lithium(Li)-ion batteries(LIBs) with high storage capacity and long cycle life, to outperform the conven...The ever-increasing demands for modern energy storage applications drive the search for novel anode materials of lithium(Li)-ion batteries(LIBs) with high storage capacity and long cycle life, to outperform the conventional LIBs anode materials. Hence, we report amorphous ternary phosphorus chalcogenide(aP_(4)SSe_(2)) as an anode material with high performance for LIBs. Synthesized via the mechanochemistry method, the a-P_(4)SSe_(2) compound is endowed with amorphous feature and offers excellent cycling stability(over 1500 mA h g^(-1) capacity after 425 cycles at 0.3 A g^(-1)), owing to the advantages of isotropic nature and synergistic effect of multielement forming Li-ion conductors during battery operation. Furthermore,as confirmed by ex situ X-ray diffraction(XRD) and transmission electron microscope(TEM), the a-P_(4)SSe_(2)anode material has a reversible and multistage Li-storage mechanism, which is extremely beneficial to long cycle life for batteries. Moreover, the autogenous intermediate electrochemical products with fast ionic conductivity can facilitate Li-ion diffusion effectively. Thus, the a-P_(4)SSe_(2)electrode delivers excellent rate capability(730 mA h g^(-1)capacity at 3 A g^(-1)). Through in situ electrochemical impedance spectra(EIS) measurements, it can be revealed that the resistances of charge transfer(R_(SEI)) and solid electrolyte interphase(R_(Ct)) decrease along with the formation of Li-ion conductors whilst the ohmic resistance(R_(Ω)) remains unchanged during the whole electrochemical process, thus resulting in rapid reaction kinetics and stable electrode to obtain excellent rate performance and cycling ability for LIBs. Moreover, the formation mechanism and electrochemical superiority of the a-P_(4)SSe_(2)phase, and its expansion to P_(4)S_(3-x)Se_(x)(x = 0, 1, 2, 3) family can prove its significance for LIBs.展开更多
The changes of capacities of positive and negative electrodes, reserve capacities of charging and discharging, and the weight of batteries during cycling have been determined. The increase of the discharging reserve c...The changes of capacities of positive and negative electrodes, reserve capacities of charging and discharging, and the weight of batteries during cycling have been determined. The increase of the discharging reserve capacity due to the conjugated electrochemical reactions of the oxidation of hydrogen storage alloy is estimated. The results show that the failure mode of Ni/MH batteries developed is as follows: during the increase of cycles, the hydrogen storage alloy is oxidized continuously and the charging reserve capacity is decreased rapidly while the discharging reserve capacity is increased gradually, thus the internal pressure is increasing, first H 2 leaks out from the battery, then the mixture of H 2 and O 2. The leakage of gases and the total reaction of oxidation of the alloy consume H 2O, and the surface oxides on the alloy increase, so that the internal resistance of the battery increases.展开更多
The mechanism for capacity fading of18650lithium ion full cells under room-temperature(RT)is discussedsystematically.The capacity loss of18650cells is about12.91%after500cycles.The cells after cycles are analyzed by X...The mechanism for capacity fading of18650lithium ion full cells under room-temperature(RT)is discussedsystematically.The capacity loss of18650cells is about12.91%after500cycles.The cells after cycles are analyzed by XRD,SEM,EIS and CV.Impedance measurement shows an overall increase in the cell resistance upon cycling.Moreover,it also presents anincreased charge-transfer resistance(Rct)for the cell cycled at RT.CV test shows that the reversibility of lithium ioninsertion/extraction reaction is reduced.The capacity fading for the cells cycled can be explained by taking into account the repeatedfilm formation over the surface of anode and the side reactions.The products of side reactions deposited on separator are able toreduce the porosity of separator.As a result,the migration resistance of lithium ion between the cathode and anode would beincreased,leading the fading of capacity and potential.展开更多
The concept of the carbon cycle in the old goaf of a coal mine based on CO_(2)utilization and storage was put forward adhering to the principle of low-carbon development,utilization of space resources in old goafs,and...The concept of the carbon cycle in the old goaf of a coal mine based on CO_(2)utilization and storage was put forward adhering to the principle of low-carbon development,utilization of space resources in old goafs,and associated gas resources development.Firstly,the evolution characteristics of overburden fissures in the goaf of the case was studied using a two-dimensional physical similarity simulation test,the sealing performance of the caprocks after stabilization was analyzed,and the fissures were counted and classi-fied.Then,the process of gaseous CO_(2)injection in the connected fissure was simulated by Ansys Fluent software,and the migration law and distribution characteristics of CO_(2)under the condition of gaseous CO_(2)injection were analyzed.Finally,the estimation models of free CO_(2)storage capacity in the old goaf were constructed considering the proportion of connected fissure and the effectiveness of CO_(2)injection.The CO_(2)storage capacity in the old goaf of the case coal mine was estimated.The results showed that a caprock group of“hard-thickness low-permeability hard-thickness”was formed after the caprock-fissures system in the goaf of the case tended to be stable vertically.The connected fissure,occlude cracks,and micro-fractures in the goaf accounted for 85.5%,8.5%,and 6%of the total fissures,respectively.Gaseous CO_(2)first migrated to the bottom of the connected fissure after CO_(2)was injected into the goaf,then spread horizontally along the bottom of the connected fissure after reaching the bottom,and finally spread longitudinally after filling the bottom of the entire connected fissure.The theoretical and effective storage capacities of free CO_(2)at normal temperature and pressure in the old goaf of the case were 9757 and 7477 t,respectively.The effective storage capacity of free CO_(2)at normal temperature and pressure in the old goaf after all minefield mined was 193404 t.The research can provide some reference for the coal mining industry to help the goal of“carbon peaking and carbon neutrality”.展开更多
Water leisure tourism is an emerging theme in urban planning, and its planning mode and operation level directly influence the eco-cycle degree of urban development. Tourism activities inevitably impact environmental ...Water leisure tourism is an emerging theme in urban planning, and its planning mode and operation level directly influence the eco-cycle degree of urban development. Tourism activities inevitably impact environmental quality of urban water spaces, and the research on the environmental carrying capacity of such spaces has also become an important prerequisite of tourism planning. Taking the Yangzhou Ancient Canal Scenic Area for an example, the paper constructed the estimated indicators of water leisure tourism environmental carrying capacity on the basis of analyzing scenic geographical resources and tourism economic conditions, and calculated the scenic area's water leisure tourism environmental integrated carrying capacity by the method of barrel extrapolation, providing a reasonable foundation for evaluating the planning conditions in the eco-cycle urban water leisure tourism planning.展开更多
Aluminum(Al)-ion batteries have emerged as a potential alternative to conventional ion batteries that rely on less abundant and costly materials like lithium.Nonetheless,given the nascent stage of advancement in Al-io...Aluminum(Al)-ion batteries have emerged as a potential alternative to conventional ion batteries that rely on less abundant and costly materials like lithium.Nonetheless,given the nascent stage of advancement in Al-ion batteries(AIBs),attaining electrode materials that can leverage both intercalation capacity and structural stability remains challenging.Herein,we demonstrate a C3N4-derived layered N,S heteroatom-doped carbon,obtained at different pyrolysis temperatures,as a cathode material for AIBs,encompassing the diffusion-controlled intercalation and surface-induced capacity with ultrahigh reversibility.The developed layered N,S-doped corbon(N,S-C)cathode,synthesized at 900℃,delivers a specific capacity of 330 mAhg^(-1)with a relatively high coulombic efficiency of~85%after 500 cycles under a current density of 0.5 A g^(-1).Owing to its reinforced adsorption capability and enlarged interlayer spacing by doping N and S heteroatoms,the N,S-C900 cathode demonstrates outstanding energy storage capacity with excellent rate performance(61 mAhg^(-1)at 20 A g^(-1))and ultrahigh reversibility(90 mAhg^(-1)at 5Ag^(-1)after 10000cycles).展开更多
铁路光传送网络是高速铁路地面基础设施的神经中枢,为避免网络故障给铁路运营带来巨大损失,重点研究光传送网P-Cycle(Pre-configured Cycle)保护技术,提出在圈扩展时以所有候选圈上未保护工作容量的方差、冗余度两个指标为比较标准的RVP...铁路光传送网络是高速铁路地面基础设施的神经中枢,为避免网络故障给铁路运营带来巨大损失,重点研究光传送网P-Cycle(Pre-configured Cycle)保护技术,提出在圈扩展时以所有候选圈上未保护工作容量的方差、冗余度两个指标为比较标准的RVPA(Redundancy and Variance Based P-Cycle Construction Algorithm)算法。圈扩展的过程中,算法将选择方差与冗余度能同时满足条件的候选圈作为本轮扩展圈,有效限制了完成保护的P-Cycle圈个数;圈扩展停止条件中,当UPL与参数M、冗余度的大小关系满足条件时,则停止圈扩展,从而限制圈上节点数,使圈个数与圈长度得到有效均衡;在仿真过程中,利用泛欧网络拓扑COST239对RVPA算法进行仿真,并对比分析不同M值下的性能。仿真结果表明,在相同空闲资源与待保护工作容量设定下,参数M取0.5时效果最优,并且RVPA算法的保护容量效率、所需圈的个数、算法整体耗时、总冗余度均优于已有的POCA(P-Cycle Optimization Configuration Heuristic Algorithm)算法。展开更多
In order to minimize the total cost of the retailer, an optimal replenishment cycle is studied by considering the deteriorating product, two-level trade credits, the limited storage capacity of their own warehouse and...In order to minimize the total cost of the retailer, an optimal replenishment cycle is studied by considering the deteriorating product, two-level trade credits, the limited storage capacity of their own warehouse and credit-linked order quantity simultaneously. A two-echelon supply chain model, which consists of a supplier and a retailer, is established. Then, the retailer's optimal replenishment cycle under all the cases are derived by using the optimization theory and method. On the basis of these, the effects of system parameters on the optimal replenishment cycle are examined by using the numerical studies. The results show that, when the retailer's trade credit period is longer (shorter) than the customer's trade credit period, the optimal replenishment cycle should he increased (decreased) as the retailer's trade credit period increases; if the minimum order quantity is high (low), the optimal replenishment cycle should be increased (not changed) as the minimum order quantity increases.展开更多
Mm0.3Ml0.7Ni3.55Co0.75Mn0.4-Al0.3 alloy has high chemical activity and favorable plateaus pressure. Mg2Ni is in favor of high hydrogen storage capacity and low weight, but it is difficult to be activated. In order to ...Mm0.3Ml0.7Ni3.55Co0.75Mn0.4-Al0.3 alloy has high chemical activity and favorable plateaus pressure. Mg2Ni is in favor of high hydrogen storage capacity and low weight, but it is difficult to be activated. In order to improve the capacity and cycle performances of hydrogen-storage alloy electrodes, Mm0.3Ml0.7Ni3.55Co0.75Mn0.4-Al0.3-x%Mg2Ni(x=0, 5, 10, 30) composite hydrogen storage alloys prepared by two-step re-melting were investigated in this work. The influences of Mg2Ni content on the cycle stabilities were analyzed by electrochemical methods. It was observed by XRD that the main phase of all the alloys is LaNi5 and the crystal lattice parameters of LaNi5 are changed with the increasing of x value, i.e, a-axis and unit cell volume decrease and c-axis decreases nonlinearly. The c-axis of alloy with x=5 is larger than the others. With the increasing of x value, capacity retentions of the composite hydrogen storage alloys rise from 66.21% while x=0 to 82.04% while x=10, but the capacity retention of the composite alloy with 30% Mg2Ni declines because of its decreasing axial ratio. More over, the composite alloy with 5% Mg2Ni shows the best cycle stability and higher discharge capacity, and it is an appropriate candidate for battery materials.展开更多
A detailed assessment of an incinerator based on fuel consumption and cycle time data is presented in this paper. The study was conducted at Temeke district hospital for 22 months consecutively covering 654 days of da...A detailed assessment of an incinerator based on fuel consumption and cycle time data is presented in this paper. The study was conducted at Temeke district hospital for 22 months consecutively covering 654 days of daily data collection on fuel consumption and cycle times. The composition for the medical waste incinerated varied between 15% and 35% for sharps waste and between 65% and 85% for other waste, with mean values of 25% and 75%, respectively. The results revealed poor performance of the incinerator due to higher fuel consumption (above 30 L/cycle). The incineration cycle times were observed to range between 2 and 4 hours, all of which were too high for the loading rates observed (55 - 214 kg). A strong dependency of diesel oil consumption on cycle time was observed due to lack of temperature control leading to continuous fuel flow into the burners. The incineration capacity was very low compared to other incinerators in terms of tons per year. This paper gives an insight on the factors affecting incinerator performance assessed based on diesel oil consumption and cycle times. It can be generalized that the incinerator performance was poor due to several factors ranging from poor incinerator design, operator skills, waste management practices, waste storage practices, etc. The hospital was advised to install a new incinerator with short incineration cycle time (30 - 40 minutes) and lower fuel consumption (10 L/cycle) at a loading rate of 200 kg/cycle.展开更多
Lithium-ion batteries(LIBs) as energy storage devices play an important role in all aspects of our life. The increasing energy demand of the society requires LIBs with higher energy density and better performance. We ...Lithium-ion batteries(LIBs) as energy storage devices play an important role in all aspects of our life. The increasing energy demand of the society requires LIBs with higher energy density and better performance. We here develop a new and easy-to-scaleup sol-gel method to coat a surface protection layer on commercial LiCoO2cathode. We demonstrate that a proper thickness can improve the cycling life with a higher cut-off potential(4.5 V), larger energy capacity(180 mAh/g at 0.5 C) and better energy density(35% more compared to non-coated LiCoO2). The mechanism of the protection layer is also revealed by a combination of electron microscopy and synchrotron X-ray spectroscopy.展开更多
Silicon(Si)is a potential high-capacity anode material for the next-generation lithium-ion battery with high energy density.However,Si anodes suff er from severe interfacial chemistry issues,such as side reactions at ...Silicon(Si)is a potential high-capacity anode material for the next-generation lithium-ion battery with high energy density.However,Si anodes suff er from severe interfacial chemistry issues,such as side reactions at the electrode/electrolyte interface,leading to poor electrochemical cycling stability.Herein,we demonstrate the fabrication of a conformal fl uorine-containing carbon(FC)layer on Si particles(Si-FC)and its in situ electrochemical conversion into a LiF-rich carbon layer above 1.5 V(vs.Li^(+)/Li).The as-formed LiF-rich carbon layer not only isolates the active Si and electrolytes,leading to the suppression of side reactions,but also induces the formation of a robust solid-electrolyte interface(SEI),leading to the stable interfacial chemistry of as-designed Si-FC particles.The Si-FC electrode has a high initial Coulombic effi ciency(CE)of 84.8%and a high reversible capacity of 1450 mAh/g at 0.4 C(1000 mA/g)for 300 cycles.In addition,a hybrid electrode consisting of 85 wt%graphite and 15 wt%Si-FC,and mass 2.3 mg/cm^(2) loading delivers a high areal capacity of 2.0 mAh/cm^(2) and a high-capacity retention of 93.2%after 100 cycles,showing the prospects for practical use.展开更多
This study investigates the evolution of the structural,volumetric and water retention behaviors of a compacted clay during soaking and desiccation considering the influences of freeze-thaw(FT)cycles and saline intrus...This study investigates the evolution of the structural,volumetric and water retention behaviors of a compacted clay during soaking and desiccation considering the influences of freeze-thaw(FT)cycles and saline intrusion.Compacted specimens were subjected to different FT cycles and then submerged in NaCl solution with different concentrations to facilitate the saline intrusion and measure the swelling behaviors.Shrinkage curve and filter paper tests were thereafter performed to reveal the clay’s volumetric and water-retention characteristics during desiccation.Mercury intrusion porosimetry and field emission scanning electron microscopy tests were conducted to observe the evolution of the clay’s microstructure.Experimental results show that the clay’s micropores decrease and macropores increase after FT cycles,which is associated with the migration of water,growth of ice crystals,and development of FT-induced cracks during FT cycles.Similar observations were obtained from specimens after the saline intrusion,which is attributed to the osmotic and osmotically-induced consolidation.FT-induced cracks significantly reduce the clay’s swelling and shrinkage potentials.FT cycles result in the shrinkage of micropores which leads to a reduction in the water retention capacity in the low suction range(capillary regime).The salinization suppresses the swelling of the clay and prolongs its primary and secondary swelling stages.The shrinkage potential initially increases and then decreases with increasing saline concentration.Salinization has significant influences on the osmotic suction and thus alters the clay’s water-retention curves in terms of total suction.It demonstrates little impact on the clay’s water-retention curves in terms of matric suction.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:51972178,52202061Hunan Provincial Nature Science Foundation,Grant/Award Number:2022JJ40068。
文摘Currently,the major challenge in terms of research on K-ion batteries is to ensure that they possess satisfactory cycle stability and specific capacity,especially in terms of the intrinsically sluggish kinetics induced by the large radius of K+ions.Here,we explore high-performance K-ion half/full batteries with high rate capability,high specific capacity,and extremely durable cycle stability based on carbon nanosheets with tailored N dopants,which can alleviate the change of volume,increase electronic conductivity,and enhance the K+ion adsorption.The as-assembled K-ion half-batteries show an excellent rate capability of 468 mA h g^(−1) at 100 mA g^(−1),which is superior to those of most carbon materials reported to date.Moreover,the as-assembled half-cells have an outstanding life span,running 40,000 cycles over 8 months with a specific capacity retention of 100%at a high current density of 2000 mA g^(−1),and the target full cells deliver a high reversible specific capacity of 146 mA h g^(−1) after 2000 cycles over 2 months,with a specific capacity retention of 113%at a high current density of 500 mA g^(−1),both of which are state of the art in the field of K-ion batteries.This study might provide some insights into and potential avenues for exploration of advanced K-ion batteries with durable stability for practical applications.
基金supported by China National Key Technology R&D Program(Grant No. 2008BAF34B13)China Postdoctoral Science Foundation Funded Project(Grant No. 2011M501363)
文摘The existing researches of stepless capacity regulation system by depressing the suction valve for reciprocation compressor always adopt hypothesis that the compressor valves are open or close instantaneously, the valve dynamic has not been taken account into thermal cycle computation, the influence of capacity regulation system on suction valves dynamic performance and cylinder thermal cycle operation has not been considered. This paper focuses on theoretical and experimental analysis of the valve dynamic and thermal cycle for reciprocating compressor in the situation of stepless capacity regulation. The valve dynamics equation, gas forces for normal and back flow, and the cylinder pressure varying with suction valve unloader moment during compression thermal cycle are discussed. A new valve dynamic model based on L-K real gas state equation for reciprocating compressor is first deduced to reduce the calculation errors induced by the ideal gas state equation. The variations of valve dynamic and cylinder pressure during part of compression stroke are calculated numerically. The calculation results reveal the non-normal thermal cycle and operation condition of compressor in stepless capacity regulation situation. The numerical simulation results of the valve dynamic and thermal cycle parameters are also verified by the stepless capacity regulation experiments in the type of 3L-10/8 reciprocating compressor. The experimental results agree with the numerical simulation results, which show that the theoretical models proposed are effective and high-precision. The proposed theoretical models build the theoretical foundation to design the real stepless capacity regulation system.
基金supported by the Regional Innovation and Development Joint Fundthe National Natural Science Foundation of China (Grant No. U20A20249)+1 种基金the Science and Technology Program of Guangdong Province of China (Grant No.2019A050510012, 2020A050515007, 2020A0505090001)the Guangzhou emerging industry development fund project of Guangzhou development and reform commission。
文摘The ever-increasing demands for modern energy storage applications drive the search for novel anode materials of lithium(Li)-ion batteries(LIBs) with high storage capacity and long cycle life, to outperform the conventional LIBs anode materials. Hence, we report amorphous ternary phosphorus chalcogenide(aP_(4)SSe_(2)) as an anode material with high performance for LIBs. Synthesized via the mechanochemistry method, the a-P_(4)SSe_(2) compound is endowed with amorphous feature and offers excellent cycling stability(over 1500 mA h g^(-1) capacity after 425 cycles at 0.3 A g^(-1)), owing to the advantages of isotropic nature and synergistic effect of multielement forming Li-ion conductors during battery operation. Furthermore,as confirmed by ex situ X-ray diffraction(XRD) and transmission electron microscope(TEM), the a-P_(4)SSe_(2)anode material has a reversible and multistage Li-storage mechanism, which is extremely beneficial to long cycle life for batteries. Moreover, the autogenous intermediate electrochemical products with fast ionic conductivity can facilitate Li-ion diffusion effectively. Thus, the a-P_(4)SSe_(2)electrode delivers excellent rate capability(730 mA h g^(-1)capacity at 3 A g^(-1)). Through in situ electrochemical impedance spectra(EIS) measurements, it can be revealed that the resistances of charge transfer(R_(SEI)) and solid electrolyte interphase(R_(Ct)) decrease along with the formation of Li-ion conductors whilst the ohmic resistance(R_(Ω)) remains unchanged during the whole electrochemical process, thus resulting in rapid reaction kinetics and stable electrode to obtain excellent rate performance and cycling ability for LIBs. Moreover, the formation mechanism and electrochemical superiority of the a-P_(4)SSe_(2)phase, and its expansion to P_(4)S_(3-x)Se_(x)(x = 0, 1, 2, 3) family can prove its significance for LIBs.
文摘The changes of capacities of positive and negative electrodes, reserve capacities of charging and discharging, and the weight of batteries during cycling have been determined. The increase of the discharging reserve capacity due to the conjugated electrochemical reactions of the oxidation of hydrogen storage alloy is estimated. The results show that the failure mode of Ni/MH batteries developed is as follows: during the increase of cycles, the hydrogen storage alloy is oxidized continuously and the charging reserve capacity is decreased rapidly while the discharging reserve capacity is increased gradually, thus the internal pressure is increasing, first H 2 leaks out from the battery, then the mixture of H 2 and O 2. The leakage of gases and the total reaction of oxidation of the alloy consume H 2O, and the surface oxides on the alloy increase, so that the internal resistance of the battery increases.
基金Project(51574287)supported by the National Natural Science Foundation of ChinaProject(2015CX001)supported by the Innovation-driven Plan in Central South University,China
文摘The mechanism for capacity fading of18650lithium ion full cells under room-temperature(RT)is discussedsystematically.The capacity loss of18650cells is about12.91%after500cycles.The cells after cycles are analyzed by XRD,SEM,EIS and CV.Impedance measurement shows an overall increase in the cell resistance upon cycling.Moreover,it also presents anincreased charge-transfer resistance(Rct)for the cell cycled at RT.CV test shows that the reversibility of lithium ioninsertion/extraction reaction is reduced.The capacity fading for the cells cycled can be explained by taking into account the repeatedfilm formation over the surface of anode and the side reactions.The products of side reactions deposited on separator are able toreduce the porosity of separator.As a result,the migration resistance of lithium ion between the cathode and anode would beincreased,leading the fading of capacity and potential.
基金the financial support from the National Natural Science Foundation of China(No.52074217)the Natural Science Basic Research Program of Shaanxi Province(No.2021JLM-26).
文摘The concept of the carbon cycle in the old goaf of a coal mine based on CO_(2)utilization and storage was put forward adhering to the principle of low-carbon development,utilization of space resources in old goafs,and associated gas resources development.Firstly,the evolution characteristics of overburden fissures in the goaf of the case was studied using a two-dimensional physical similarity simulation test,the sealing performance of the caprocks after stabilization was analyzed,and the fissures were counted and classi-fied.Then,the process of gaseous CO_(2)injection in the connected fissure was simulated by Ansys Fluent software,and the migration law and distribution characteristics of CO_(2)under the condition of gaseous CO_(2)injection were analyzed.Finally,the estimation models of free CO_(2)storage capacity in the old goaf were constructed considering the proportion of connected fissure and the effectiveness of CO_(2)injection.The CO_(2)storage capacity in the old goaf of the case coal mine was estimated.The results showed that a caprock group of“hard-thickness low-permeability hard-thickness”was formed after the caprock-fissures system in the goaf of the case tended to be stable vertically.The connected fissure,occlude cracks,and micro-fractures in the goaf accounted for 85.5%,8.5%,and 6%of the total fissures,respectively.Gaseous CO_(2)first migrated to the bottom of the connected fissure after CO_(2)was injected into the goaf,then spread horizontally along the bottom of the connected fissure after reaching the bottom,and finally spread longitudinally after filling the bottom of the entire connected fissure.The theoretical and effective storage capacities of free CO_(2)at normal temperature and pressure in the old goaf of the case were 9757 and 7477 t,respectively.The effective storage capacity of free CO_(2)at normal temperature and pressure in the old goaf after all minefield mined was 193404 t.The research can provide some reference for the coal mining industry to help the goal of“carbon peaking and carbon neutrality”.
基金Supported by 2011 Jiangsu Provincial Doctor Candidate Scientific Research Renovation Program: Studies on Urban Water Leisure Tourism Planning Based on Eco-cycle Theory (CXZZ11_0543)
文摘Water leisure tourism is an emerging theme in urban planning, and its planning mode and operation level directly influence the eco-cycle degree of urban development. Tourism activities inevitably impact environmental quality of urban water spaces, and the research on the environmental carrying capacity of such spaces has also become an important prerequisite of tourism planning. Taking the Yangzhou Ancient Canal Scenic Area for an example, the paper constructed the estimated indicators of water leisure tourism environmental carrying capacity on the basis of analyzing scenic geographical resources and tourism economic conditions, and calculated the scenic area's water leisure tourism environmental integrated carrying capacity by the method of barrel extrapolation, providing a reasonable foundation for evaluating the planning conditions in the eco-cycle urban water leisure tourism planning.
基金the financial support from the National Natural Science Foundation of China(Grand No.52203092)an SSF Synergy Program(EM16-0004)the National Academic Infrastructure for Supercomputing in Sweden(NAISS)funded by the Swedish Research Council through grant agreement no.202206725
文摘Aluminum(Al)-ion batteries have emerged as a potential alternative to conventional ion batteries that rely on less abundant and costly materials like lithium.Nonetheless,given the nascent stage of advancement in Al-ion batteries(AIBs),attaining electrode materials that can leverage both intercalation capacity and structural stability remains challenging.Herein,we demonstrate a C3N4-derived layered N,S heteroatom-doped carbon,obtained at different pyrolysis temperatures,as a cathode material for AIBs,encompassing the diffusion-controlled intercalation and surface-induced capacity with ultrahigh reversibility.The developed layered N,S-doped corbon(N,S-C)cathode,synthesized at 900℃,delivers a specific capacity of 330 mAhg^(-1)with a relatively high coulombic efficiency of~85%after 500 cycles under a current density of 0.5 A g^(-1).Owing to its reinforced adsorption capability and enlarged interlayer spacing by doping N and S heteroatoms,the N,S-C900 cathode demonstrates outstanding energy storage capacity with excellent rate performance(61 mAhg^(-1)at 20 A g^(-1))and ultrahigh reversibility(90 mAhg^(-1)at 5Ag^(-1)after 10000cycles).
文摘铁路光传送网络是高速铁路地面基础设施的神经中枢,为避免网络故障给铁路运营带来巨大损失,重点研究光传送网P-Cycle(Pre-configured Cycle)保护技术,提出在圈扩展时以所有候选圈上未保护工作容量的方差、冗余度两个指标为比较标准的RVPA(Redundancy and Variance Based P-Cycle Construction Algorithm)算法。圈扩展的过程中,算法将选择方差与冗余度能同时满足条件的候选圈作为本轮扩展圈,有效限制了完成保护的P-Cycle圈个数;圈扩展停止条件中,当UPL与参数M、冗余度的大小关系满足条件时,则停止圈扩展,从而限制圈上节点数,使圈个数与圈长度得到有效均衡;在仿真过程中,利用泛欧网络拓扑COST239对RVPA算法进行仿真,并对比分析不同M值下的性能。仿真结果表明,在相同空闲资源与待保护工作容量设定下,参数M取0.5时效果最优,并且RVPA算法的保护容量效率、所需圈的个数、算法整体耗时、总冗余度均优于已有的POCA(P-Cycle Optimization Configuration Heuristic Algorithm)算法。
基金The National Natural Science Foundation of China(No.71371003,71001025,71390333)
文摘In order to minimize the total cost of the retailer, an optimal replenishment cycle is studied by considering the deteriorating product, two-level trade credits, the limited storage capacity of their own warehouse and credit-linked order quantity simultaneously. A two-echelon supply chain model, which consists of a supplier and a retailer, is established. Then, the retailer's optimal replenishment cycle under all the cases are derived by using the optimization theory and method. On the basis of these, the effects of system parameters on the optimal replenishment cycle are examined by using the numerical studies. The results show that, when the retailer's trade credit period is longer (shorter) than the customer's trade credit period, the optimal replenishment cycle should he increased (decreased) as the retailer's trade credit period increases; if the minimum order quantity is high (low), the optimal replenishment cycle should be increased (not changed) as the minimum order quantity increases.
基金Project Supported bythe Talents Development Foundation of Inner Mongolia Autonomous Region (200608)
文摘Mm0.3Ml0.7Ni3.55Co0.75Mn0.4-Al0.3 alloy has high chemical activity and favorable plateaus pressure. Mg2Ni is in favor of high hydrogen storage capacity and low weight, but it is difficult to be activated. In order to improve the capacity and cycle performances of hydrogen-storage alloy electrodes, Mm0.3Ml0.7Ni3.55Co0.75Mn0.4-Al0.3-x%Mg2Ni(x=0, 5, 10, 30) composite hydrogen storage alloys prepared by two-step re-melting were investigated in this work. The influences of Mg2Ni content on the cycle stabilities were analyzed by electrochemical methods. It was observed by XRD that the main phase of all the alloys is LaNi5 and the crystal lattice parameters of LaNi5 are changed with the increasing of x value, i.e, a-axis and unit cell volume decrease and c-axis decreases nonlinearly. The c-axis of alloy with x=5 is larger than the others. With the increasing of x value, capacity retentions of the composite hydrogen storage alloys rise from 66.21% while x=0 to 82.04% while x=10, but the capacity retention of the composite alloy with 30% Mg2Ni declines because of its decreasing axial ratio. More over, the composite alloy with 5% Mg2Ni shows the best cycle stability and higher discharge capacity, and it is an appropriate candidate for battery materials.
文摘A detailed assessment of an incinerator based on fuel consumption and cycle time data is presented in this paper. The study was conducted at Temeke district hospital for 22 months consecutively covering 654 days of daily data collection on fuel consumption and cycle times. The composition for the medical waste incinerated varied between 15% and 35% for sharps waste and between 65% and 85% for other waste, with mean values of 25% and 75%, respectively. The results revealed poor performance of the incinerator due to higher fuel consumption (above 30 L/cycle). The incineration cycle times were observed to range between 2 and 4 hours, all of which were too high for the loading rates observed (55 - 214 kg). A strong dependency of diesel oil consumption on cycle time was observed due to lack of temperature control leading to continuous fuel flow into the burners. The incineration capacity was very low compared to other incinerators in terms of tons per year. This paper gives an insight on the factors affecting incinerator performance assessed based on diesel oil consumption and cycle times. It can be generalized that the incinerator performance was poor due to several factors ranging from poor incinerator design, operator skills, waste management practices, waste storage practices, etc. The hospital was advised to install a new incinerator with short incineration cycle time (30 - 40 minutes) and lower fuel consumption (10 L/cycle) at a loading rate of 200 kg/cycle.
基金supported by Callahan Faculty Scholar Endowment Fund from Oregon State University,USA
文摘Lithium-ion batteries(LIBs) as energy storage devices play an important role in all aspects of our life. The increasing energy demand of the society requires LIBs with higher energy density and better performance. We here develop a new and easy-to-scaleup sol-gel method to coat a surface protection layer on commercial LiCoO2cathode. We demonstrate that a proper thickness can improve the cycling life with a higher cut-off potential(4.5 V), larger energy capacity(180 mAh/g at 0.5 C) and better energy density(35% more compared to non-coated LiCoO2). The mechanism of the protection layer is also revealed by a combination of electron microscopy and synchrotron X-ray spectroscopy.
基金supported by the Innovation Fund of Wuhan National Laboratory for Optoelectronics of Huazhong University of Science and Technology.
文摘Silicon(Si)is a potential high-capacity anode material for the next-generation lithium-ion battery with high energy density.However,Si anodes suff er from severe interfacial chemistry issues,such as side reactions at the electrode/electrolyte interface,leading to poor electrochemical cycling stability.Herein,we demonstrate the fabrication of a conformal fl uorine-containing carbon(FC)layer on Si particles(Si-FC)and its in situ electrochemical conversion into a LiF-rich carbon layer above 1.5 V(vs.Li^(+)/Li).The as-formed LiF-rich carbon layer not only isolates the active Si and electrolytes,leading to the suppression of side reactions,but also induces the formation of a robust solid-electrolyte interface(SEI),leading to the stable interfacial chemistry of as-designed Si-FC particles.The Si-FC electrode has a high initial Coulombic effi ciency(CE)of 84.8%and a high reversible capacity of 1450 mAh/g at 0.4 C(1000 mA/g)for 300 cycles.In addition,a hybrid electrode consisting of 85 wt%graphite and 15 wt%Si-FC,and mass 2.3 mg/cm^(2) loading delivers a high areal capacity of 2.0 mAh/cm^(2) and a high-capacity retention of 93.2%after 100 cycles,showing the prospects for practical use.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51779191 and 51809199)
文摘This study investigates the evolution of the structural,volumetric and water retention behaviors of a compacted clay during soaking and desiccation considering the influences of freeze-thaw(FT)cycles and saline intrusion.Compacted specimens were subjected to different FT cycles and then submerged in NaCl solution with different concentrations to facilitate the saline intrusion and measure the swelling behaviors.Shrinkage curve and filter paper tests were thereafter performed to reveal the clay’s volumetric and water-retention characteristics during desiccation.Mercury intrusion porosimetry and field emission scanning electron microscopy tests were conducted to observe the evolution of the clay’s microstructure.Experimental results show that the clay’s micropores decrease and macropores increase after FT cycles,which is associated with the migration of water,growth of ice crystals,and development of FT-induced cracks during FT cycles.Similar observations were obtained from specimens after the saline intrusion,which is attributed to the osmotic and osmotically-induced consolidation.FT-induced cracks significantly reduce the clay’s swelling and shrinkage potentials.FT cycles result in the shrinkage of micropores which leads to a reduction in the water retention capacity in the low suction range(capillary regime).The salinization suppresses the swelling of the clay and prolongs its primary and secondary swelling stages.The shrinkage potential initially increases and then decreases with increasing saline concentration.Salinization has significant influences on the osmotic suction and thus alters the clay’s water-retention curves in terms of total suction.It demonstrates little impact on the clay’s water-retention curves in terms of matric suction.