Line commutated converter based high-voltage direct-current(LCC-HVDC)transmissions are prone to harmonic oscillation under weak grids.Impedance modeling is an effective method for assessing interaction stability.First...Line commutated converter based high-voltage direct-current(LCC-HVDC)transmissions are prone to harmonic oscillation under weak grids.Impedance modeling is an effective method for assessing interaction stability.Firstly,this paper proposes an improved calculation method for the DC voltage and AC currents of commutation stations to address the complex linearization of the commutation process and constructs an overall harmonic state-space(HSS)model of an LCC-HVDC.Based on the HSS model,the closed-loop AC impedances on the LCC-HVDC sending and receiving ends are then derived and verified.The impedance characteristics of the LCC-HVDC are then analyzed to provide a physical explanation for the harmonic oscillation of the system.The effects of the grid strength and control parameters on system stability are also analyzed.To improve the impedance characteristics and operating stability of the LCC-HVDC system,a virtual impedance based stability enhancement control is proposed,and a parameter design method is considered to ensure satisfactory phase margins at both the sending and receiving ends.Finally,simulation results are presented to verify the validity of the impedance model and virtual impedance based stability enhancement control.展开更多
This study presents a harmonic transfer function(HTF)based single-input single-output(SISO)impedance modeling method.The method converts an HTF from phase domain to sequence domain and then transforms it into an SISO ...This study presents a harmonic transfer function(HTF)based single-input single-output(SISO)impedance modeling method.The method converts an HTF from phase domain to sequence domain and then transforms it into an SISO impedance while preserving the frequency coupling information of different sequences and different harmonics.Applications of this method to a line-commutated converter based high-voltage direct current(LCC-HVDC)system are presented.The results demonstrate the accuracy of the derived SISO impedance,and a truncation-order selection is suggested.The case study shows that the proposed method facilitates simpler impedance measurements and associated stability analysis.展开更多
In line commutated converter based high-voltage direct current(LCC-HVDC)transmission systems,the transformer saturation can induce harmonic instability,which poses a serious threat to the safe operation of the power s...In line commutated converter based high-voltage direct current(LCC-HVDC)transmission systems,the transformer saturation can induce harmonic instability,which poses a serious threat to the safe operation of the power system.However,the nonlinear characteristics of the power grids introduced by the transformer saturation considerably limit the application of the conventional analysis methods.To address the issue,this paper derives a linear model for the transformer saturation caused by the DC current due to the converter modulation.Afterwards,the nonlinear characteristics of power grids with the transformer saturation is described by a complex valued impedance matrix.Based on the derived impedance matrix,the system harmonic stability is analyzed and the mechanism of the transformer saturation induced harmonic instability is revealed.Finally,the sensitivity analysis is conducted to find the key factors that influence the system core saturation instability.The proposed impedance model is verified by the electromagnetic transient simulation,and the simulation results corroborate the effectiveness of the proposed impedance model.Index TermsLine commutated converter based high voltage direct current(LCC-HVDC),transformer saturation,harmonic instability,impedance model.展开更多
With the rapid development of renewable energy,wind-thermal-bundled power transmission by line-commutated converter based high-voltage direct current(LCC-HVDC)systems has been widely developed.The dynamic interaction ...With the rapid development of renewable energy,wind-thermal-bundled power transmission by line-commutated converter based high-voltage direct current(LCC-HVDC)systems has been widely developed.The dynamic interaction mechanisms among permanent magnet synchronous generators(PMSGs),synchronous generators(SGs),and LCC-HVDC system become complex.To deal with this issue,a path analysis method(PAM)is proposed to study the dynamic interaction mechanism,and the damping reconstruction is used to analyze the damping characteristic of the system.First,based on the modular modeling,linearized models for the PMSG subsystem,the LCC-HVDC subsystem,and the SG subsystem are established.Second,based on the closed-loop transfer function diagram of the system,the disturbance transfer path and coupling relationship among subsystems are analyzed by the PAM,and the damping characteristic analysis of the SG-dominated oscillation mode is studied based on the damping reconstruction.Compared with the PAM,the small-signal model of the system is obtained and eigenvalue analysis results are presented.Then,the effect of the control parameters on the damping characteristic is analyzed and the conclusions are verified by time-domain simulations.Finally,the penalty functions of the oscillation modes and decay modes are taken as the objective function,and an optimization strategy based on the Monte Carlo method is proposed to solve the parameter optimization problem.Numerical simulation results are presented to validate the effectiveness of the proposed strategy.展开更多
Parallel DNA helices with reverse WatsonCrick pairing have been described in several papers.It has been pointed out,however,that the parallel structures may also be in equilibrium with antiparallel WatsonCrick helices...Parallel DNA helices with reverse WatsonCrick pairing have been described in several papers.It has been pointed out,however,that the parallel structures may also be in equilibrium with antiparallel WatsonCrick helices due to their closely similar properties.To avoid the problem we have prepared and characterized DNA helices which are constrained to possess parallel polarity by two dC residues,or CC+clamps,at both the ends of AT oligomer chains.The residues are hemiprotonated below neutral pH,forming two stable CC+base pairs with three hydrogen bonds at each end of the helix.The physical properties of these constructs can then be used to calibrate those of duplexes having the same sequences but lacking the terminal C residues.Though recent studies indicate that dC acid selfstructures are fourstranded with intercalated bases,gel electrophoresis indicates that these structures are not present in the molecules described here.展开更多
Subsequent commutation failure(SCF)can be easily generated during the first commutation failure(CF)recovery process in a line-commutated converter-based high voltage direct-current system.SCF poses a significant threa...Subsequent commutation failure(SCF)can be easily generated during the first commutation failure(CF)recovery process in a line-commutated converter-based high voltage direct-current system.SCF poses a significant threat to the safe and stable operation of power systems,and accurate prediction of CF is thus important.However,SCF is affected by the operating characteristics of the main circuit and the coupling effects of sequential control response in the inverter station.These are difficult to predict accurately.In this paper,a new SCF prediction method considering the control response is proposed based on the physical principle of SCF.The time sequence and switching conditions of the controllers at different stages of the first CF recovery process are described,and the corresponding equations of commutation voltage affected by different controllers are derived.The calculation method of the SCF threshold voltage is proposed,and the prediction method is established.Simulations show that the proposed method can predict SCF accurately and provide useful tools to suppress SCF.展开更多
煤炭制氢是我国当前最主要的低成本制氢方式,但制氢过程伴有大量的CO2排放,不符合低碳发展要求,需要和碳捕集与封存(C C S)技术结合。本文评估了结合CCS技术的煤炭制氢碳足迹和成本,发现:煤炭制氢结合CCS技术后,碳足迹由22.66 kg CO2当...煤炭制氢是我国当前最主要的低成本制氢方式,但制氢过程伴有大量的CO2排放,不符合低碳发展要求,需要和碳捕集与封存(C C S)技术结合。本文评估了结合CCS技术的煤炭制氢碳足迹和成本,发现:煤炭制氢结合CCS技术后,碳足迹由22.66 kg CO2当量(eq)/kg H2下降至10.52 kg CO2eq/kg H2,同时制氢成本增加49.80%,达到了14.01元/kg H2,但相比其他制氢技术仍具有成本优势。因此,我国在中短期氢气产业发展规划中,要推行煤炭制氢结合CCS技术,实现其低碳发展;在长期规划中,应将其定位成过渡性制氢技术,推动氢气供给结构向更加低碳的方向调整,以支撑2060年“碳中和”目标的顺利实现。展开更多
Commutation failure(CF)is a frequent dynamic event at inverter of LCC-HVDC systems caused by AC side faults which can lead to inverter blocking,interruption of active power transfer,and even system blackout.To elimina...Commutation failure(CF)is a frequent dynamic event at inverter of LCC-HVDC systems caused by AC side faults which can lead to inverter blocking,interruption of active power transfer,and even system blackout.To eliminate CFs and improve system performance,new Flexible LCC-HVDC topologies have been proposed in previous research but with limited analysis on its economic performance.Therefore,to further validate the applicability of Flexible LCC-HVDC topologies,this paper utilizes Life-Cycle Cost Analysis model to analyze the life-cycle cost of inverter stations for conventional LCCHVDC,Capacitor Commutated Converter based HVDC(CCCHVDC)topology and Flexible LCC-HVDC topologies including Controllable Capacitor based Flexible LCC-HVDC,AC Filterless Controllable Capacitor based Flexible LCC-HVDC and improved Flexible LCC-HVDC.Through a case study based on a 500 kV,1000 MW LCC-HVDC scheme,comparison results show that the AC Filterless Controllable Capacitor based Flexible LCCHVDC topology and the improved Flexible LCC-HVDC topology have lower cost than the conventional LCC-HVDC and CCCHVDC topologies,which proves that the elimination of CFs can be achieved with reduced cost.展开更多
Line-commutated converter based high-voltage direct-current(LCC-HVDC)transmission systems are prone to subsequent commutation failure(SCF),which consequently leads to the forced blocking of HVDC links,affecting the op...Line-commutated converter based high-voltage direct-current(LCC-HVDC)transmission systems are prone to subsequent commutation failure(SCF),which consequently leads to the forced blocking of HVDC links,affecting the operation of the power system.An accurate commutation failure(CF)identification is fairly vital to the prevention of SCF.However,the existing CF identification methods cause CF misjudge or detection lag,which can limit the effect of SCF mitigation strategy.In addition,earlier approaches to suppress SCF do not clarify the key factor that determines the evolution of extinction angle during system recovery and neglect the influence.Hence,this paper firstly analyzes the normal commutation process and CF feature based on the evolution topology of converter valve conduction in detail.Secondly,the energy in the leakage inductance of converter transformer is presented to characterize the commutation state of the valves.Then a CF identification method is proposed utilizing the leakage inductance energy.Thirdly,taking the key variable which is crucial to the tendency of extinction angle during the recovery process into account,a fault current limiting strategy for SCF mitigation is put forward.Compared with the original methods,the proposed methods have a better performance in CF identification and mitigation in terms of detection accuracy and mitigation effect.Finally,case study on PSCAD/EMTDC validates the proposed methods.展开更多
To reduce the probability of commutation failure(CF)of a line commutated converter based high-voltage direct current(LCC-HVDC)transmission,a DC chopper topology composed of power consumption sub-modules based on thyri...To reduce the probability of commutation failure(CF)of a line commutated converter based high-voltage direct current(LCC-HVDC)transmission,a DC chopper topology composed of power consumption sub-modules based on thyristor full-bridge module(TFB-PCSM)is proposed.Firstly,the mechanism of the proposed topology to mitigate CF is analyzed,and the working modes of TFB-PCSM in different operation states are introduced.Secondly,the coordinated control strategy between the proposed DC chopper and LCC-HVDC is designed,and the voltage-current stresses of the TFB-PCSMs are investigated.Finally,the ability to mitigate the CF issues and the fault recovery performance of LCC-HVDC system are studied in PSCAD/EMTDC.The results show that the probability of CF of LCC-HVDC is significantly reduced,and the performances of fault recovery are effectively improved by the proposed DC chopper.展开更多
基金supported in part by the National Natural Science Foundation of China(No.U2166602)in part by the Major Special Project of Hunan Province(No.2020GK1010)in part by the Innovation Young Talents Program of Changsha Science and Technology Bureau(No.kq2107005).
文摘Line commutated converter based high-voltage direct-current(LCC-HVDC)transmissions are prone to harmonic oscillation under weak grids.Impedance modeling is an effective method for assessing interaction stability.Firstly,this paper proposes an improved calculation method for the DC voltage and AC currents of commutation stations to address the complex linearization of the commutation process and constructs an overall harmonic state-space(HSS)model of an LCC-HVDC.Based on the HSS model,the closed-loop AC impedances on the LCC-HVDC sending and receiving ends are then derived and verified.The impedance characteristics of the LCC-HVDC are then analyzed to provide a physical explanation for the harmonic oscillation of the system.The effects of the grid strength and control parameters on system stability are also analyzed.To improve the impedance characteristics and operating stability of the LCC-HVDC system,a virtual impedance based stability enhancement control is proposed,and a parameter design method is considered to ensure satisfactory phase margins at both the sending and receiving ends.Finally,simulation results are presented to verify the validity of the impedance model and virtual impedance based stability enhancement control.
基金supported by National Natural Science Foundation of China(No.52177104).
文摘This study presents a harmonic transfer function(HTF)based single-input single-output(SISO)impedance modeling method.The method converts an HTF from phase domain to sequence domain and then transforms it into an SISO impedance while preserving the frequency coupling information of different sequences and different harmonics.Applications of this method to a line-commutated converter based high-voltage direct current(LCC-HVDC)system are presented.The results demonstrate the accuracy of the derived SISO impedance,and a truncation-order selection is suggested.The case study shows that the proposed method facilitates simpler impedance measurements and associated stability analysis.
文摘In line commutated converter based high-voltage direct current(LCC-HVDC)transmission systems,the transformer saturation can induce harmonic instability,which poses a serious threat to the safe operation of the power system.However,the nonlinear characteristics of the power grids introduced by the transformer saturation considerably limit the application of the conventional analysis methods.To address the issue,this paper derives a linear model for the transformer saturation caused by the DC current due to the converter modulation.Afterwards,the nonlinear characteristics of power grids with the transformer saturation is described by a complex valued impedance matrix.Based on the derived impedance matrix,the system harmonic stability is analyzed and the mechanism of the transformer saturation induced harmonic instability is revealed.Finally,the sensitivity analysis is conducted to find the key factors that influence the system core saturation instability.The proposed impedance model is verified by the electromagnetic transient simulation,and the simulation results corroborate the effectiveness of the proposed impedance model.Index TermsLine commutated converter based high voltage direct current(LCC-HVDC),transformer saturation,harmonic instability,impedance model.
基金supported in part by the National Natural Science Foundation of China(No.U22B20109).
文摘With the rapid development of renewable energy,wind-thermal-bundled power transmission by line-commutated converter based high-voltage direct current(LCC-HVDC)systems has been widely developed.The dynamic interaction mechanisms among permanent magnet synchronous generators(PMSGs),synchronous generators(SGs),and LCC-HVDC system become complex.To deal with this issue,a path analysis method(PAM)is proposed to study the dynamic interaction mechanism,and the damping reconstruction is used to analyze the damping characteristic of the system.First,based on the modular modeling,linearized models for the PMSG subsystem,the LCC-HVDC subsystem,and the SG subsystem are established.Second,based on the closed-loop transfer function diagram of the system,the disturbance transfer path and coupling relationship among subsystems are analyzed by the PAM,and the damping characteristic analysis of the SG-dominated oscillation mode is studied based on the damping reconstruction.Compared with the PAM,the small-signal model of the system is obtained and eigenvalue analysis results are presented.Then,the effect of the control parameters on the damping characteristic is analyzed and the conclusions are verified by time-domain simulations.Finally,the penalty functions of the oscillation modes and decay modes are taken as the objective function,and an optimization strategy based on the Monte Carlo method is proposed to solve the parameter optimization problem.Numerical simulation results are presented to validate the effectiveness of the proposed strategy.
文摘Parallel DNA helices with reverse WatsonCrick pairing have been described in several papers.It has been pointed out,however,that the parallel structures may also be in equilibrium with antiparallel WatsonCrick helices due to their closely similar properties.To avoid the problem we have prepared and characterized DNA helices which are constrained to possess parallel polarity by two dC residues,or CC+clamps,at both the ends of AT oligomer chains.The residues are hemiprotonated below neutral pH,forming two stable CC+base pairs with three hydrogen bonds at each end of the helix.The physical properties of these constructs can then be used to calibrate those of duplexes having the same sequences but lacking the terminal C residues.Though recent studies indicate that dC acid selfstructures are fourstranded with intercalated bases,gel electrophoresis indicates that these structures are not present in the molecules described here.
基金supported in part by the National Natural Science Foundation of China under Grant(51877018).
文摘Subsequent commutation failure(SCF)can be easily generated during the first commutation failure(CF)recovery process in a line-commutated converter-based high voltage direct-current system.SCF poses a significant threat to the safe and stable operation of power systems,and accurate prediction of CF is thus important.However,SCF is affected by the operating characteristics of the main circuit and the coupling effects of sequential control response in the inverter station.These are difficult to predict accurately.In this paper,a new SCF prediction method considering the control response is proposed based on the physical principle of SCF.The time sequence and switching conditions of the controllers at different stages of the first CF recovery process are described,and the corresponding equations of commutation voltage affected by different controllers are derived.The calculation method of the SCF threshold voltage is proposed,and the prediction method is established.Simulations show that the proposed method can predict SCF accurately and provide useful tools to suppress SCF.
文摘煤炭制氢是我国当前最主要的低成本制氢方式,但制氢过程伴有大量的CO2排放,不符合低碳发展要求,需要和碳捕集与封存(C C S)技术结合。本文评估了结合CCS技术的煤炭制氢碳足迹和成本,发现:煤炭制氢结合CCS技术后,碳足迹由22.66 kg CO2当量(eq)/kg H2下降至10.52 kg CO2eq/kg H2,同时制氢成本增加49.80%,达到了14.01元/kg H2,但相比其他制氢技术仍具有成本优势。因此,我国在中短期氢气产业发展规划中,要推行煤炭制氢结合CCS技术,实现其低碳发展;在长期规划中,应将其定位成过渡性制氢技术,推动氢气供给结构向更加低碳的方向调整,以支撑2060年“碳中和”目标的顺利实现。
基金supported by a collaborative project between the University of Birmingham and C-EPRI Electric Power Engineering Co.Ltd under grant“Key Technologies of Flexible LCC Converter with Controllable Capacitors”(SGNRPG00WZQT2100564A).
文摘Commutation failure(CF)is a frequent dynamic event at inverter of LCC-HVDC systems caused by AC side faults which can lead to inverter blocking,interruption of active power transfer,and even system blackout.To eliminate CFs and improve system performance,new Flexible LCC-HVDC topologies have been proposed in previous research but with limited analysis on its economic performance.Therefore,to further validate the applicability of Flexible LCC-HVDC topologies,this paper utilizes Life-Cycle Cost Analysis model to analyze the life-cycle cost of inverter stations for conventional LCCHVDC,Capacitor Commutated Converter based HVDC(CCCHVDC)topology and Flexible LCC-HVDC topologies including Controllable Capacitor based Flexible LCC-HVDC,AC Filterless Controllable Capacitor based Flexible LCC-HVDC and improved Flexible LCC-HVDC.Through a case study based on a 500 kV,1000 MW LCC-HVDC scheme,comparison results show that the AC Filterless Controllable Capacitor based Flexible LCCHVDC topology and the improved Flexible LCC-HVDC topology have lower cost than the conventional LCC-HVDC and CCCHVDC topologies,which proves that the elimination of CFs can be achieved with reduced cost.
基金supported by the National Natural Science Foundation of China(No.51977183).
文摘Line-commutated converter based high-voltage direct-current(LCC-HVDC)transmission systems are prone to subsequent commutation failure(SCF),which consequently leads to the forced blocking of HVDC links,affecting the operation of the power system.An accurate commutation failure(CF)identification is fairly vital to the prevention of SCF.However,the existing CF identification methods cause CF misjudge or detection lag,which can limit the effect of SCF mitigation strategy.In addition,earlier approaches to suppress SCF do not clarify the key factor that determines the evolution of extinction angle during system recovery and neglect the influence.Hence,this paper firstly analyzes the normal commutation process and CF feature based on the evolution topology of converter valve conduction in detail.Secondly,the energy in the leakage inductance of converter transformer is presented to characterize the commutation state of the valves.Then a CF identification method is proposed utilizing the leakage inductance energy.Thirdly,taking the key variable which is crucial to the tendency of extinction angle during the recovery process into account,a fault current limiting strategy for SCF mitigation is put forward.Compared with the original methods,the proposed methods have a better performance in CF identification and mitigation in terms of detection accuracy and mitigation effect.Finally,case study on PSCAD/EMTDC validates the proposed methods.
基金supported by National Natural Science Foundation of China(No.51877077)。
文摘To reduce the probability of commutation failure(CF)of a line commutated converter based high-voltage direct current(LCC-HVDC)transmission,a DC chopper topology composed of power consumption sub-modules based on thyristor full-bridge module(TFB-PCSM)is proposed.Firstly,the mechanism of the proposed topology to mitigate CF is analyzed,and the working modes of TFB-PCSM in different operation states are introduced.Secondly,the coordinated control strategy between the proposed DC chopper and LCC-HVDC is designed,and the voltage-current stresses of the TFB-PCSMs are investigated.Finally,the ability to mitigate the CF issues and the fault recovery performance of LCC-HVDC system are studied in PSCAD/EMTDC.The results show that the probability of CF of LCC-HVDC is significantly reduced,and the performances of fault recovery are effectively improved by the proposed DC chopper.