The Precambrian basement rocks in the Bengbu and neighboring areas, located at the southeastern margin of the North China Craton, occur as granulite terrains and xenoliths in the Mesozoic dioritic porphyry.
The Paleoproterozoic (-1.73 Ga) basement rocks from Maddhapara, Bangladesh show a large range of chemical variations including diorite, quartz diorite, monzodiorite, quartz monzonite and granite. These are composed ...The Paleoproterozoic (-1.73 Ga) basement rocks from Maddhapara, Bangladesh show a large range of chemical variations including diorite, quartz diorite, monzodiorite, quartz monzonite and granite. These are composed of varying proportions of quartz+plagioclase+K-feldspar+biotite+ hornblende±epidote+titanite+magnetite+apatite and zircon. Amphibole and biotite, dominant ferro- magnesian minerals, have been analyzed with an electron microprobe. The biotite, Mg-dominant trioc- tahedral micas, is classified as phlogopitic nature. Relatively high Mg (1.33-1.53 pfu), Mg^# (0.52-0.59) and low AIw (0.13-0.25 pfu) contents in the biotite reflect slightly fractionated magma, which might be a relative indicator for the origin of the parental magma. Biotite is also a very good sensor of oxidation state of the parental magma. Oxygen fugacity of the studied biotites estimate within the QFM and HM buffers and equilibrate at about -12.35 and -12.46, which exhibit the source materials were relatively higher oxidation state during crystallization and related to arc magmatism. Whereas, calcic amphi- boles, a parental member of arc-related igneous suite, display consistent oxygen fugacity values (-11.7 to -12.3), low Al^# (0.16-0.21) with H2Omelt (5.6 wt.%-9.5 wt.%) suggest their reliability with the typical values of calc-alkaline magma crystallization. The oxygen fugacity of magma is related to its source material, which in turn depends on tectonic setting. Discrimination diagrams and chemical indices of both biotite and amphibole of dioritic rocks reveal calc-alkaline orogenic complexes; mostly I-type suite formed within subduction-related environments. Moreover, igneous micas are used as metal- logenic indicator. The biotites with coexisting amphibole compositions show an apparent calc-alkaline trend of differentiation. The study suggests that the trend of oxidized magmas is commonly associated with compressive tectonic and convergent plate boundaries.展开更多
This study aims at identifying possible correlations between shapes, types of geophysical anomalies and borehole productivity according to geological and hydrogeotogical contexts. The methodology adopted was a two-pro...This study aims at identifying possible correlations between shapes, types of geophysical anomalies and borehole productivity according to geological and hydrogeotogical contexts. The methodology adopted was a two-pronged one--the first step sought to: (1) interpret the electrical resistivity values from horizontal profiling and vertical electrical sounding implemented in Seno province that preceded the drilling of 513 boreholes; (ii) interpret data from pumping tests carried out on boreholes having a discharge superior to 1 m3/h ("positive borehole") by using Cooper-Jacob's method. In the second step, according to geology, authors tried to identify possible correlations between each of the qualitative geophysical parameters: ~shape of anomaly〉〉, tttype of anomaly〉〉 and ~〈type curve〉〉 on the one hand, and hydrogeological parameters such as discharge, alteration thickness, transmissivity and saturated level on the other. The results of this study have shown that the chances of having a positive borehole in Seno province are higher when the type of anomaly is TCC (80%), shape of anomaly is "W" and when type curve is "H" (80%) for all geological formations. Granitic formations are those that record higher discharges while schists record high transmissivity values.展开更多
This research investigates and reports on the petrology and geochemical characteristics of crystalline basement rocks in Ora-Ekiti,Southwestern Nigeria.Exhaustive geological investigation reveals migmatite,banded gnei...This research investigates and reports on the petrology and geochemical characteristics of crystalline basement rocks in Ora-Ekiti,Southwestern Nigeria.Exhaustive geological investigation reveals migmatite,banded gneiss,granite gneiss and biotite gneiss underlie the area.In reducing order of abundance,petrographic examination reveals that migmatite contains quartz,muscovite and opaque minerals.Banded geniuses contain quartz,biotite,plagioclase,and opaque minerals.Granite geniuses contain quartz,plagioclase,biotite,microcline and opaque;while biotite geniuses contain biotite,plagioclase,opaque minerals,and quartz.Silica contents in migmatite(69.50%-72.66%;ca.71.23%),banded gneiss(71.66%-77.1%;ca.75.23%),biotite gneiss(72.32%-76.18%;ca.73.83%)and granite gneiss(69.82%-73.15%;ca.71.95%)indicate the rocks are siliceous.High alumina contents in migmatite(12.18%),banded gneiss(10.28%),biotite gneiss(11.46%)and granite gneiss(9.97%)are comparable to similar rocks in the basement complex.All the rocks show Ba,Sr and Rb enrichment.Harker diagrams of Al_(2)O_(3)versus SiO_(2)and CaO versus SiO_(2)show negative trends while Na_(2)O versus SiO_(2),K_(2)O versus SiO_(2)and TiO_(2)versus SiO_(2)plots showed positive trends.This variation probably depicts extensive crystal fractionation in the magmatic systems that produced the rocks prior to metamorphism or partial melting of the precursor rock.SiO_(2)versus(Na_(2)O+K_(2)O)classifies the rocks as granite to granodiorite.The rocks are high K-calc-alkaline and calc-alkalic on SiO_(2)-K_(2)O plot.This shows the rocks are potassic meaning that they are formed from a potassium-rich source.The plot of Al_(2)O_(3)/(Na_(2)O+K_(2)O)versus Al_(2)O_(3)/(CaO+Na_(2)O+K_(2)O)reveals the crystalline rocks are orogenic and originated from granitoid with meta luminous affinity.The rocks consist of gneisses of no economic minerals,but the petrology reveals them as common rocks typical of metamorphic terrains and geochemical features of the rocks reveal they are felsic and of granitic composition.展开更多
The origin, age and evolution of the Precambrian metamorphic basement of southern China provide useful insights into early crustal development. Here, we present new laser ablation-inductively coupled plasma-mass spect...The origin, age and evolution of the Precambrian metamorphic basement of southern China provide useful insights into early crustal development. Here, we present new laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb age data for detrital zircons from five samples of the Precambrian metamorphic basement of the Xiangshan uranium orefield. Two of these samples, from the northern Xiangshan volcanic basin, yielded a total of 140 U-Pb ages that cluster within the Neoproterozoic (773-963 Ma; 79.3% of data points), with the rest being scattered through the Paleoproterozoic and Mesoproterozoic, along with a single Archean age. These ages indicate that this basement material is associated with the Cathaysia Block. In comparison, the 172 concordant ages from the other three samples from the southern part of the Xiangshan volcanic basin cluster within the Neoproterozoic (767-944 Ma; 59.8%) as well as the Proterozoic (37.8%) and the Archean (2502-2712 Ma; 14.5%). These samples are also free of zircons with Grenvillian ages, indicating that these units are associated with the southeastern Yangtze Block. Combining these data with the geochemistry of these units, which suggests that the metamorphosed sedimentary rocks within the northern and southern parts of the Xiangshan basin have a common component from a magmatic island arc that formed during the early Neoproterozoic, we infer that the basin was located along the boundary between the Cathaysian and Yangtze blocks. In addition, the zircons within the samples from the southern and northern parts of the Xiangshan basin show different pre-Neoproterozoic (963 Ma) age populations but similar post- Neoproterozoic zircon populations, indicating that the amalgamation of the Cathaysian and Yangtze blocks occurred after the Neoproterozoic (960 Ma), with magmatism peaking at 830 Ma and rifting starting at -770 Ma, leading to the subsequent deposition (from bottom to top) of the Shenshan, Kuli, and Shangshi formations.展开更多
Seafloor extension and associated rifting in the North Atlantic Area, which started in Early Paleogene (from −62 Ma), resulted in a few micro-continents being isolated and submerged below sea levels. Published isotopi...Seafloor extension and associated rifting in the North Atlantic Area, which started in Early Paleogene (from −62 Ma), resulted in a few micro-continents being isolated and submerged below sea levels. Published isotopic data for sunken offshore continental materials (basement) in the North Atlantic area are quite sparse, but a few do exist for the Rockall Plateau, or more precisely the Rockall Bank. Isotopic data for Early Paleogene basaltic materials, covering basement rocks of the Rockall Plateau, have hitherto only been publicised for the NW margin of the Hatton bank. The Early Paleogene basaltic archipelago of the Faroe Islands, on which some isotopic data do exist, rests on an ancient sunken continental crust of unknown geochemical and isotopic compositions. The objective of this contribution is to assess potential lead isotopic relationships between the Rockall Plateau and the Faroese sub-basaltic basement, based on the sparse available isotopic data existing for the former and using available isotopic data for slightly contaminated Faroese basaltic rocks. The results reached in this contribution point to a likely association between the Faroese sub-basaltic basement and the basement of the Rockall Bank and hence the Rockall Plateau and potentially also between Faroese basaltic rocks and contemporaneous counterparts from the Hatton Bank.展开更多
Low-temperature Sb(Au-Hg) deposits in South China account for more than 50% of the world’s Sb reserves,however,their genesis remains controversial.Here we report the first study that integrates U-Pb and Lu-Hf analysi...Low-temperature Sb(Au-Hg) deposits in South China account for more than 50% of the world’s Sb reserves,however,their genesis remains controversial.Here we report the first study that integrates U-Pb and Lu-Hf analysis by LA-(MC)-ICPMS and conventional(U-Th)/He analysis,all applied to single zircon crystals,in an attempt to constrain the origin and timing of world-class Sb(Au-Hg) deposits in Banxi(South China).Zircon separated from a quartz-stibnite ore and an altered country rock samples revealed similar U-Pb age spectra defining two major populations-Paleoproterozoic(~1900-2500 Ma) and Neoproterozoic(~770 Ma),which are characterized by variable εHf(t) values(-10.7 to 9.1 and-16.5 to 11.2,respectively) and Hf crustal model ages(TDMC)(2.48 to 3.24 Ga and 0.97 to 2.71 Ga,respectively).The U-Pb age and Hf isotopic features of the zircons are consistent with the Banxi Group in the region,indicating that the zircons involved in the low-temperature hydrothermal system were originally from the Banxi Group country rocks.Thirty-three mineralization-related zircon crystals yielded a mean(U-Th)/He age of 123.8±3.8 Ma,which is interpreted to represent the timing of the latest low-temperature mineralization stage of the Banxi Sb deposit.The combined U-Pb,Lu-Hf and(U-Th)/He data suggest that Precambrian basement rocks were the major contributors to the low-temperature mineralization,and that Early Cretaceous(130-120 Ma) could be the most important ore-forming epoch for the Sb deposits in South China.This study also demonstrates the analytical feasibility of integrated U-Pb-Lu-Hf-(U-Th)/He "triple-dating",all applied to single zircon crystals.This approach reveals the full evolution of zircon,from its origin of the magmatic source,through its crystallization and low-temperature cooling.Although this study demonstrates the usefulness of this integrated approach in dating low-temperature mineralization,it has great potential for zircon provenance and other studies that may benefit from the large amount of information that can be extracted from single zircon crystals.展开更多
基金financially supported by the Ph.D Foundation of the Ministry of Education of China(grant No.20133402130008)the National Basic Research Program of China(grant No.2015CB856104)the National Natural Science Foundation of China(grant No.41273036)
文摘The Precambrian basement rocks in the Bengbu and neighboring areas, located at the southeastern margin of the North China Craton, occur as granulite terrains and xenoliths in the Mesozoic dioritic porphyry.
基金Maddhapara Granite Mining Company Ltd. for their kind permission for sampling and supports
文摘The Paleoproterozoic (-1.73 Ga) basement rocks from Maddhapara, Bangladesh show a large range of chemical variations including diorite, quartz diorite, monzodiorite, quartz monzonite and granite. These are composed of varying proportions of quartz+plagioclase+K-feldspar+biotite+ hornblende±epidote+titanite+magnetite+apatite and zircon. Amphibole and biotite, dominant ferro- magnesian minerals, have been analyzed with an electron microprobe. The biotite, Mg-dominant trioc- tahedral micas, is classified as phlogopitic nature. Relatively high Mg (1.33-1.53 pfu), Mg^# (0.52-0.59) and low AIw (0.13-0.25 pfu) contents in the biotite reflect slightly fractionated magma, which might be a relative indicator for the origin of the parental magma. Biotite is also a very good sensor of oxidation state of the parental magma. Oxygen fugacity of the studied biotites estimate within the QFM and HM buffers and equilibrate at about -12.35 and -12.46, which exhibit the source materials were relatively higher oxidation state during crystallization and related to arc magmatism. Whereas, calcic amphi- boles, a parental member of arc-related igneous suite, display consistent oxygen fugacity values (-11.7 to -12.3), low Al^# (0.16-0.21) with H2Omelt (5.6 wt.%-9.5 wt.%) suggest their reliability with the typical values of calc-alkaline magma crystallization. The oxygen fugacity of magma is related to its source material, which in turn depends on tectonic setting. Discrimination diagrams and chemical indices of both biotite and amphibole of dioritic rocks reveal calc-alkaline orogenic complexes; mostly I-type suite formed within subduction-related environments. Moreover, igneous micas are used as metal- logenic indicator. The biotites with coexisting amphibole compositions show an apparent calc-alkaline trend of differentiation. The study suggests that the trend of oxidized magmas is commonly associated with compressive tectonic and convergent plate boundaries.
文摘This study aims at identifying possible correlations between shapes, types of geophysical anomalies and borehole productivity according to geological and hydrogeotogical contexts. The methodology adopted was a two-pronged one--the first step sought to: (1) interpret the electrical resistivity values from horizontal profiling and vertical electrical sounding implemented in Seno province that preceded the drilling of 513 boreholes; (ii) interpret data from pumping tests carried out on boreholes having a discharge superior to 1 m3/h ("positive borehole") by using Cooper-Jacob's method. In the second step, according to geology, authors tried to identify possible correlations between each of the qualitative geophysical parameters: ~shape of anomaly〉〉, tttype of anomaly〉〉 and ~〈type curve〉〉 on the one hand, and hydrogeological parameters such as discharge, alteration thickness, transmissivity and saturated level on the other. The results of this study have shown that the chances of having a positive borehole in Seno province are higher when the type of anomaly is TCC (80%), shape of anomaly is "W" and when type curve is "H" (80%) for all geological formations. Granitic formations are those that record higher discharges while schists record high transmissivity values.
文摘This research investigates and reports on the petrology and geochemical characteristics of crystalline basement rocks in Ora-Ekiti,Southwestern Nigeria.Exhaustive geological investigation reveals migmatite,banded gneiss,granite gneiss and biotite gneiss underlie the area.In reducing order of abundance,petrographic examination reveals that migmatite contains quartz,muscovite and opaque minerals.Banded geniuses contain quartz,biotite,plagioclase,and opaque minerals.Granite geniuses contain quartz,plagioclase,biotite,microcline and opaque;while biotite geniuses contain biotite,plagioclase,opaque minerals,and quartz.Silica contents in migmatite(69.50%-72.66%;ca.71.23%),banded gneiss(71.66%-77.1%;ca.75.23%),biotite gneiss(72.32%-76.18%;ca.73.83%)and granite gneiss(69.82%-73.15%;ca.71.95%)indicate the rocks are siliceous.High alumina contents in migmatite(12.18%),banded gneiss(10.28%),biotite gneiss(11.46%)and granite gneiss(9.97%)are comparable to similar rocks in the basement complex.All the rocks show Ba,Sr and Rb enrichment.Harker diagrams of Al_(2)O_(3)versus SiO_(2)and CaO versus SiO_(2)show negative trends while Na_(2)O versus SiO_(2),K_(2)O versus SiO_(2)and TiO_(2)versus SiO_(2)plots showed positive trends.This variation probably depicts extensive crystal fractionation in the magmatic systems that produced the rocks prior to metamorphism or partial melting of the precursor rock.SiO_(2)versus(Na_(2)O+K_(2)O)classifies the rocks as granite to granodiorite.The rocks are high K-calc-alkaline and calc-alkalic on SiO_(2)-K_(2)O plot.This shows the rocks are potassic meaning that they are formed from a potassium-rich source.The plot of Al_(2)O_(3)/(Na_(2)O+K_(2)O)versus Al_(2)O_(3)/(CaO+Na_(2)O+K_(2)O)reveals the crystalline rocks are orogenic and originated from granitoid with meta luminous affinity.The rocks consist of gneisses of no economic minerals,but the petrology reveals them as common rocks typical of metamorphic terrains and geochemical features of the rocks reveal they are felsic and of granitic composition.
基金financially supported by the National Natural Science Foundation of China(Grant No.41602069 and 41572185)the Fundamental Science on Radioactive Geology and Exploration Technology Laboratory(Grant No.RGET1402)+1 种基金the Natural Science Foundation of Jiangxi Province(Grant No.20171BAB213026)Science and technology research projectfrom the Education Department of Jiangxi Province(Grant No.GJJ150554)
文摘The origin, age and evolution of the Precambrian metamorphic basement of southern China provide useful insights into early crustal development. Here, we present new laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb age data for detrital zircons from five samples of the Precambrian metamorphic basement of the Xiangshan uranium orefield. Two of these samples, from the northern Xiangshan volcanic basin, yielded a total of 140 U-Pb ages that cluster within the Neoproterozoic (773-963 Ma; 79.3% of data points), with the rest being scattered through the Paleoproterozoic and Mesoproterozoic, along with a single Archean age. These ages indicate that this basement material is associated with the Cathaysia Block. In comparison, the 172 concordant ages from the other three samples from the southern part of the Xiangshan volcanic basin cluster within the Neoproterozoic (767-944 Ma; 59.8%) as well as the Proterozoic (37.8%) and the Archean (2502-2712 Ma; 14.5%). These samples are also free of zircons with Grenvillian ages, indicating that these units are associated with the southeastern Yangtze Block. Combining these data with the geochemistry of these units, which suggests that the metamorphosed sedimentary rocks within the northern and southern parts of the Xiangshan basin have a common component from a magmatic island arc that formed during the early Neoproterozoic, we infer that the basin was located along the boundary between the Cathaysian and Yangtze blocks. In addition, the zircons within the samples from the southern and northern parts of the Xiangshan basin show different pre-Neoproterozoic (963 Ma) age populations but similar post- Neoproterozoic zircon populations, indicating that the amalgamation of the Cathaysian and Yangtze blocks occurred after the Neoproterozoic (960 Ma), with magmatism peaking at 830 Ma and rifting starting at -770 Ma, leading to the subsequent deposition (from bottom to top) of the Shenshan, Kuli, and Shangshi formations.
文摘Seafloor extension and associated rifting in the North Atlantic Area, which started in Early Paleogene (from −62 Ma), resulted in a few micro-continents being isolated and submerged below sea levels. Published isotopic data for sunken offshore continental materials (basement) in the North Atlantic area are quite sparse, but a few do exist for the Rockall Plateau, or more precisely the Rockall Bank. Isotopic data for Early Paleogene basaltic materials, covering basement rocks of the Rockall Plateau, have hitherto only been publicised for the NW margin of the Hatton bank. The Early Paleogene basaltic archipelago of the Faroe Islands, on which some isotopic data do exist, rests on an ancient sunken continental crust of unknown geochemical and isotopic compositions. The objective of this contribution is to assess potential lead isotopic relationships between the Rockall Plateau and the Faroese sub-basaltic basement, based on the sparse available isotopic data existing for the former and using available isotopic data for slightly contaminated Faroese basaltic rocks. The results reached in this contribution point to a likely association between the Faroese sub-basaltic basement and the basement of the Rockall Bank and hence the Rockall Plateau and potentially also between Faroese basaltic rocks and contemporaneous counterparts from the Hatton Bank.
基金This work was co-financed by the National Natural Science Foundation of China(Grant No.41502067)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUG150612)+1 种基金supported by Australian Research Council Discovery funding scheme(DP160102427)a Curtin Research Fellowship
文摘Low-temperature Sb(Au-Hg) deposits in South China account for more than 50% of the world’s Sb reserves,however,their genesis remains controversial.Here we report the first study that integrates U-Pb and Lu-Hf analysis by LA-(MC)-ICPMS and conventional(U-Th)/He analysis,all applied to single zircon crystals,in an attempt to constrain the origin and timing of world-class Sb(Au-Hg) deposits in Banxi(South China).Zircon separated from a quartz-stibnite ore and an altered country rock samples revealed similar U-Pb age spectra defining two major populations-Paleoproterozoic(~1900-2500 Ma) and Neoproterozoic(~770 Ma),which are characterized by variable εHf(t) values(-10.7 to 9.1 and-16.5 to 11.2,respectively) and Hf crustal model ages(TDMC)(2.48 to 3.24 Ga and 0.97 to 2.71 Ga,respectively).The U-Pb age and Hf isotopic features of the zircons are consistent with the Banxi Group in the region,indicating that the zircons involved in the low-temperature hydrothermal system were originally from the Banxi Group country rocks.Thirty-three mineralization-related zircon crystals yielded a mean(U-Th)/He age of 123.8±3.8 Ma,which is interpreted to represent the timing of the latest low-temperature mineralization stage of the Banxi Sb deposit.The combined U-Pb,Lu-Hf and(U-Th)/He data suggest that Precambrian basement rocks were the major contributors to the low-temperature mineralization,and that Early Cretaceous(130-120 Ma) could be the most important ore-forming epoch for the Sb deposits in South China.This study also demonstrates the analytical feasibility of integrated U-Pb-Lu-Hf-(U-Th)/He "triple-dating",all applied to single zircon crystals.This approach reveals the full evolution of zircon,from its origin of the magmatic source,through its crystallization and low-temperature cooling.Although this study demonstrates the usefulness of this integrated approach in dating low-temperature mineralization,it has great potential for zircon provenance and other studies that may benefit from the large amount of information that can be extracted from single zircon crystals.