We have appraised the relationships between soil moisture, groundwater depth, and plant species diversity in the lower reaches of the Tarim River in western China, by analyzing field data from 25 monitoring wells acro...We have appraised the relationships between soil moisture, groundwater depth, and plant species diversity in the lower reaches of the Tarim River in western China, by analyzing field data from 25 monitoring wells across eight study sites and 25 permanent vegetation survey plots. It is noted that groundwater depth, soil moisture and plant species diversity are closely related. It has been proven that the critical phreatic water depth is five meters in the lower reaches of the Tarim River. We acquired the mean phreatic evaporation of different groundwater levels every month by averaging the two results of phreatic evaporation using the Qunk and Averyanov formulas. Based on different vegetation types and acreage with different groundwater depth, the total ecological water demand (EWD) of natural vegetation in 2005 was 2.4×10^8 m^3 in the lower reaches of the Tarim River. Analyzing the monthly EWD, we found that the EWD in the growth season (from April to September) is 81% of the year's total EWD. The EWD in May, June and July was 47% of the year's total EWD, which indicates the best time for dispensing artificial water. This research aims at realizing the sustainable development of water resources and provides a scientific basis for water resource management and sound collocation of the Tarim River Basin.展开更多
The ecological water demand (EWD) is the least water amount required to maintain the structure and the function of the special eco-system and the temporal scale of a study on the EWD must be a season's time. Based...The ecological water demand (EWD) is the least water amount required to maintain the structure and the function of the special eco-system and the temporal scale of a study on the EWD must be a season's time. Based on GIS and RS with the source information of hydrological data of 46 hydrological gauges covering 52 years and the digital images of Landsat TM in 1986, 1996 and 2000, the landscape patterns, precipitation and runoff in the East Liaohe River Basin were analyzed. With the result of the above analysis, the spatial and temporal changes of the ecological water demand in the slope systems (EWDSS) of the East Liaohe River Basin (ELRB) were derived. Landscapes in the ELRB are dispersed and strongly disturbed by human actions. The hydrological regime in ELRB has distinct spatial variations. The average annual EWDSS in the ELRB is 504.72 mm (324.08-618.89 mm), and the average EWDSS in the growth season (from May to September) is 88.29% of the year's total EWDSS .The ultimate guaranteeing ratio of the EWDSS in ELRB is 90%. The scarce EWDSS area in the whole year and in the growth season are 60.47% and 74.01% of the entire basin respectively. The trend of scarce EWDSS area is most serious according to the quantity and area of scarce EWDSS regions.展开更多
本文以石羊河流域中下游为研究区,采用考虑生态系统恢复力(latitude of ecosystem resilience,LER)的月尺度生态需水评估方法计算19822020年植被月适宜生态需水量、最小生态需水量以及相应的生态缺水量,并与土壤水分特征值法(characteri...本文以石羊河流域中下游为研究区,采用考虑生态系统恢复力(latitude of ecosystem resilience,LER)的月尺度生态需水评估方法计算19822020年植被月适宜生态需水量、最小生态需水量以及相应的生态缺水量,并与土壤水分特征值法(characteristic value of soil water,CVSW)进行比较,分析不同类型植被生长期的水分盈亏关系。结果表明:LER法和CVSW法计算结果相近,但LER法具有更大的生态需水阈值区间;天然降水基本可以满足植被的基本生存,但无法满足正常生长需求;LER法的适宜需水条件下,各植被生长期总体处于缺水状态,缺水严重程度排序为灌木林>其他林地>疏林地>高覆盖度草地>中覆盖度草地>有林地,全部植被生长期总适宜生态需水量为3.7×10^(8)m^(3),亏缺水量为1.2×10^(8)m^(3),同一植被亏缺水量基本符合春秋多、夏季少的规律;最小需水条件下,只有其他林地存在生长期缺水情况,全部植被生长期总最小生态需水量为0.8×10^(8)m^(3);在缺乏土壤水分数据的干旱地区,LER法具有良好的适用性。研究结果可为石羊河流域水资源高效利用和干旱区生态系统的恢复与重建提供理论参考。展开更多
The operation of reservoir(s) has a certain impact on the downstream hydrologic regime,and even endangers the ecological water safety of river corridor and ecosystems which interact with river system.Therefore,ecologi...The operation of reservoir(s) has a certain impact on the downstream hydrologic regime,and even endangers the ecological water safety of river corridor and ecosystems which interact with river system.Therefore,ecological operation needs to be carried out in order to ensure ecological water use of downstream zone.The key technological support is the estimation and integrated calculation of ecological water demand.The connotation of the integrated calculation on ecological water demand lies on that the ecological water demand of different ecosystems is integrated to meet the requirements of water allocation and operation on watershed scale in terms of hydrological cycle.Considering the practical requirement of ecological operation of reservoir(s),this study proposed an integrated calculation approach of ecological water demand according to the ecological water demand in various ecosystems as well as the hydraulic connection among them;it established an integrated calculation model of regional ecological water demand by means of the distributed hydrological model,and studied the integrated calculation in Yalong River basin which is the source area of the west route of South-North Water Transfer Project as an example.The results indicated that the integrated calculation model more effectively combined the ecological water demand and hydraulic connection of ecosystems in time and space,compared with the lumped water balance analysis,since the former conquered the defect of insufficient ecological water source and supplement on multiple spatial and temporal scales,and met the demand of ecological operation of reservoir(s).展开更多
基金National Natural Science Foundation of China, No.90502004 Knowledge Innovation Project of the CAS, No.KZCX2-YW-Q10-3-4, No.KZCX2-YW-Q10-3
文摘We have appraised the relationships between soil moisture, groundwater depth, and plant species diversity in the lower reaches of the Tarim River in western China, by analyzing field data from 25 monitoring wells across eight study sites and 25 permanent vegetation survey plots. It is noted that groundwater depth, soil moisture and plant species diversity are closely related. It has been proven that the critical phreatic water depth is five meters in the lower reaches of the Tarim River. We acquired the mean phreatic evaporation of different groundwater levels every month by averaging the two results of phreatic evaporation using the Qunk and Averyanov formulas. Based on different vegetation types and acreage with different groundwater depth, the total ecological water demand (EWD) of natural vegetation in 2005 was 2.4×10^8 m^3 in the lower reaches of the Tarim River. Analyzing the monthly EWD, we found that the EWD in the growth season (from April to September) is 81% of the year's total EWD. The EWD in May, June and July was 47% of the year's total EWD, which indicates the best time for dispensing artificial water. This research aims at realizing the sustainable development of water resources and provides a scientific basis for water resource management and sound collocation of the Tarim River Basin.
基金Key Resource and Environment Projects of CAS,No.KZ952-J1-067
文摘The ecological water demand (EWD) is the least water amount required to maintain the structure and the function of the special eco-system and the temporal scale of a study on the EWD must be a season's time. Based on GIS and RS with the source information of hydrological data of 46 hydrological gauges covering 52 years and the digital images of Landsat TM in 1986, 1996 and 2000, the landscape patterns, precipitation and runoff in the East Liaohe River Basin were analyzed. With the result of the above analysis, the spatial and temporal changes of the ecological water demand in the slope systems (EWDSS) of the East Liaohe River Basin (ELRB) were derived. Landscapes in the ELRB are dispersed and strongly disturbed by human actions. The hydrological regime in ELRB has distinct spatial variations. The average annual EWDSS in the ELRB is 504.72 mm (324.08-618.89 mm), and the average EWDSS in the growth season (from May to September) is 88.29% of the year's total EWDSS .The ultimate guaranteeing ratio of the EWDSS in ELRB is 90%. The scarce EWDSS area in the whole year and in the growth season are 60.47% and 74.01% of the entire basin respectively. The trend of scarce EWDSS area is most serious according to the quantity and area of scarce EWDSS regions.
文摘本文以石羊河流域中下游为研究区,采用考虑生态系统恢复力(latitude of ecosystem resilience,LER)的月尺度生态需水评估方法计算19822020年植被月适宜生态需水量、最小生态需水量以及相应的生态缺水量,并与土壤水分特征值法(characteristic value of soil water,CVSW)进行比较,分析不同类型植被生长期的水分盈亏关系。结果表明:LER法和CVSW法计算结果相近,但LER法具有更大的生态需水阈值区间;天然降水基本可以满足植被的基本生存,但无法满足正常生长需求;LER法的适宜需水条件下,各植被生长期总体处于缺水状态,缺水严重程度排序为灌木林>其他林地>疏林地>高覆盖度草地>中覆盖度草地>有林地,全部植被生长期总适宜生态需水量为3.7×10^(8)m^(3),亏缺水量为1.2×10^(8)m^(3),同一植被亏缺水量基本符合春秋多、夏季少的规律;最小需水条件下,只有其他林地存在生长期缺水情况,全部植被生长期总最小生态需水量为0.8×10^(8)m^(3);在缺乏土壤水分数据的干旱地区,LER法具有良好的适用性。研究结果可为石羊河流域水资源高效利用和干旱区生态系统的恢复与重建提供理论参考。
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51021066)the State Key Development Program for Basic Research of China (Grant No. 2010CB951102)
文摘The operation of reservoir(s) has a certain impact on the downstream hydrologic regime,and even endangers the ecological water safety of river corridor and ecosystems which interact with river system.Therefore,ecological operation needs to be carried out in order to ensure ecological water use of downstream zone.The key technological support is the estimation and integrated calculation of ecological water demand.The connotation of the integrated calculation on ecological water demand lies on that the ecological water demand of different ecosystems is integrated to meet the requirements of water allocation and operation on watershed scale in terms of hydrological cycle.Considering the practical requirement of ecological operation of reservoir(s),this study proposed an integrated calculation approach of ecological water demand according to the ecological water demand in various ecosystems as well as the hydraulic connection among them;it established an integrated calculation model of regional ecological water demand by means of the distributed hydrological model,and studied the integrated calculation in Yalong River basin which is the source area of the west route of South-North Water Transfer Project as an example.The results indicated that the integrated calculation model more effectively combined the ecological water demand and hydraulic connection of ecosystems in time and space,compared with the lumped water balance analysis,since the former conquered the defect of insufficient ecological water source and supplement on multiple spatial and temporal scales,and met the demand of ecological operation of reservoir(s).