This paper suggests a hydrodynamic stability theory of distorted laminar flow, and presents a kind of distortion profile of mean velocity in parallel shear flow. With such distortion profiles, the new theory can be us...This paper suggests a hydrodynamic stability theory of distorted laminar flow, and presents a kind of distortion profile of mean velocity in parallel shear flow. With such distortion profiles, the new theory can be used to investigate the stability behaviour of parallel shear flow, and thus suggests a new possible approach to instability.展开更多
Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ...Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.展开更多
基金Project Supported by National Natural Science Foundation of China
文摘This paper suggests a hydrodynamic stability theory of distorted laminar flow, and presents a kind of distortion profile of mean velocity in parallel shear flow. With such distortion profiles, the new theory can be used to investigate the stability behaviour of parallel shear flow, and thus suggests a new possible approach to instability.
文摘Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.