期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Genome-wide analysis of basic leucine zipper transcription factor families in Arabidopsis thaliana,Oryza sativa and Populus trichocarpa 被引量:7
1
作者 戢茜 张亮生 +1 位作者 王翼飞 王健 《Journal of Shanghai University(English Edition)》 CAS 2009年第2期174-182,共9页
The basic leucine zipper (bZIP) transcription factors form a large gene family that is important in pathogen defense, light and stress signaling, etc. The Completed whole genome sequences of model plants Arabidopsis... The basic leucine zipper (bZIP) transcription factors form a large gene family that is important in pathogen defense, light and stress signaling, etc. The Completed whole genome sequences of model plants Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa) and poplar (Populus trichocarpa) constitute a valuable resource for genome-wide analysis and genomic comparative analysis, as they are representatives of the two major evolutionary lineages within the angiosperms: the monocotyledons and the dicotyledons. In this study, bioinformatics analysis identified 74, 89 and 88 bZIP genes respectively in Arabidopsis, rice and poplar. Moreover, a comprehensive overview of this gene family is presented, including the gene structure, phylogeny, chromosome distribution, conserved motifs. As a result, the plant bZIPs were organized into 10 subfamilies on basis of phylogenetic relationship. Gene duplication events during the family evolution history were also investigated. And it was further concluded that chromosomal/segmental duplication might have played a key role in gene expansion of bZIP gene family. 展开更多
关键词 basic leucine zipper (bZIP) phylogenetic analysis dimerization properties
下载PDF
OsbZIP72 Is Involved in Transcriptional Gene-Regulation Pathway of Abscisic Acid Signal Transduction by Activating Rice High-Affinity Potassium Transporter OsHKT1;1 被引量:3
2
作者 WANG Baoxiang LIU Yan +13 位作者 WANG Yifeng LI Jingfang SUN Zhiguang CHI Ming XING Yungao XU Bo YANG Bo LI Jian LIU Jinbo CHEN Tingmu FANG Zhaowei LU Baiguan XU Dayong Babatunde Kazeem BELLO 《Rice science》 SCIE CSCD 2021年第3期257-267,共11页
We created CRISPR-Cas9 knock-out and overexpressing OsbZIP72 transgenic rice plants to gain a better understanding of the role and molecular mechanism of OsbZIP72 gene in stress tolerance,which has remained largely el... We created CRISPR-Cas9 knock-out and overexpressing OsbZIP72 transgenic rice plants to gain a better understanding of the role and molecular mechanism of OsbZIP72 gene in stress tolerance,which has remained largely elusive.OsbZIP72 was expressed and integrated into rice transgenic plant genomes,and the OsbZIP72 transcript in overexpression lines was elicited by salinity,abscisic acid(ABA)and drought stresses.OsbZIP72 overexpressing plants showed higher tolerance to drought and salinity stresses,while knock-out transgenic lines showed higher sensitivity to these stresses.The differentially expressed genes(DEGs)from RNA-sequencing data encompassed several abiotic stress genes,and the functional classification of these DEGs demonstrated the robust transcriptome diversity in OsbZIP72.Yeast one-hybrid,along with luciferase assay,indicated that OsbZIP72 acted as a transcriptional initiator.Remarkably,electrophoresis mobility assay revealed that OsbZIP72 bound directly to the ABAresponsive element in the OsHKT1;1 promoter region and activated its transcription.Overall,our findings revealed that OsbZIP72 can act as a transcriptional modulator with the ability to induce the expression of OsHKT1;1 in response to environmental stress through an ABA-dependent regulatory pathway,indicating that OsbZIP72 can play a crucial role in the ABA-mediated salt and drought tolerance pathway in rice. 展开更多
关键词 abscisic acid basic leucine zipper drought stress high-affinity potassium transporter RICE salinity stress transgenic plant
下载PDF
Recent advances in plant membrane-bound transcription factor research: Emphasis on intracellular movement 被引量:12
3
作者 Pil Joon Seo 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2014年第4期334-342,共9页
Transcription factors constitute numerous signal transduction networks and play a central role in gene expression regulation. Recent studies have shown that a limited portion of transcription factors are anchored in t... Transcription factors constitute numerous signal transduction networks and play a central role in gene expression regulation. Recent studies have shown that a limited portion of transcription factors are anchored in the cellular membrane, storing as dormant forms. Upon exposure to environmental and developmental cues, these transcription factors are released from the membrane and translocated to the nucleus, where they regulate associated target genes. As this process skips both transcriptional and translational regulations, it guarantees prompt response to external and internal signals. Membrane- bound transcription factors (MTFs) undergo several unique steps that are not involved in the action of canonical nuclear transcription factors: proteolytic processing and intracellular movement. Recently, alternative splicing has also emerged as a mechanism to liberate MTFs from the cellular membranes, establishing an additional activation scheme independent of proteolytic processing. Multiple layers of MTF regulation add complexity to transcriptional regulatory scheme and ensure elaborate action of MTFs. In this review, we provide an overview of recent findings on MTFs in plants and highlight the molecular mechanisms underlying MTF liberation from cellular membranes with an emphasis on intracellular movement. 展开更多
关键词 Alternative splicing basic leucine zipper membrane-boundtranscription factor bZIP28 intracellular movement membrane-bound transcription factor NTL proteolytic processing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部