期刊文献+
共找到1,510篇文章
< 1 2 76 >
每页显示 20 50 100
Geometry and 3D seismic characterisation of post-rift normal faults in the Pearl River Mouth Basin,northern South China Sea
1
作者 Yuanhang Liu Jinwei Gao +2 位作者 Wanli Chen Jiliang Wang Umair Khan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第4期25-39,共15页
Based on high-resolution 3D seismic data acquired in the Pearl(Zhujiang)River Mouth Basin of the northern South China Sea,this study investigated the geometry,spatial extension,and throw distribution of the post-rift ... Based on high-resolution 3D seismic data acquired in the Pearl(Zhujiang)River Mouth Basin of the northern South China Sea,this study investigated the geometry,spatial extension,and throw distribution of the post-rift normal fault through detailed seismic interpretation and fault modeling.A total of 289 post-rift normal faults were identified in the study area and can be classified into four types:(1)isolated normal faults above the carbonate platform;(2)isolated normal faults cutting through the carbonate platform;(3)conjugate normal faults,and(4)connecting normal faults.Throw distribution analysis on the fault planes show that the vertical throw profiles of most normal fault exhibit flat-topped profiles.Isolated normal faults above the carbonate platform exhibit roughly concentric ellipses with maximum throw zones in the central section whereas the normal faults cutting through the carbonate platform miss the lowermost section due to the chaotic seismic reflections in the interior of the carbonate platform.The vertical throws of conjugate normal faults anomalously decrease toward their intersection region on the fault plane whereas the connecting normal faults present two maximum throw zones in the central section of the fault plane.According to the symmetric elliptical distribution model of fault throw,an estimation was made indicating that normal faults cutting through the carbonate platform extended downward between-1308 s and-1780 s(two-way travel time)in depth and may not penetrate the entire Liuhua carbonate platform.Moreover,it is observed that the distribution of karst caves on the top of the carbonate platform disaccord with those of hydrocarbon reservoirs and the post-rift normal faults cutting through the carbonate platform in the study area.We propose that these karst caves formed most probably by corrosive fluids derived from magmatic activities during the Dongsha event,rather than pore waters or hydrocarbons. 展开更多
关键词 Post-rift normal faults fault throw Karst caves Corrosive fluids Pearl River Mouth basin south china Sea
下载PDF
Characteristics and main controlling factors of helium resources in the main petroliferous basins of the North China Craton
2
作者 Zihan Gao Zhi Chen +5 位作者 Hongyi He Zhaofei Liu Chang Lu Hanyu Wang Yili Luo Ying Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第2期23-33,共11页
At present, the main controlling factors of helium accumulation is one of the key scientific problems restricting the exploration and development of helium reservoir. In this paper, based on the calculation results of... At present, the main controlling factors of helium accumulation is one of the key scientific problems restricting the exploration and development of helium reservoir. In this paper, based on the calculation results of He generation rate and the geochemical characteristics of the produced gas, both the similarities and differences between natural gas and He resources in the Bohai Bay, Ordos and the surrounding Songliao Basin are compared and analyzed, discussing the main controlling factors of helium resources in the three main petroliferous basins of the North China Craton. It is found that the three basins of Bohai Bay, Ordos and Songliao have similar characteristics of source rocks, reservoirs and cap rocks, that's why their methane resource characteristics are essentially the same. The calculated ~4He generation per cubic metamorphic crystalline basement in the three basins is roughly equivalent, which is consistent with the measured He resources, and it is believed that the ~4He of radiogenic from the crust is the main factor controlling the overall He accumulation in the three basins;there is almost no contribution of the mantle-derived CH_4, which suggests that the transport and uplift of mantle-derived ~3He carried by the present-day magmatic activities along the deep-large faults is not the main reason for the mantle-derived ~3He mixing in the basins. Combined with the results of regional volcanic and geophysical studies,it is concluded that under the background of the destruction of North China Craton, magma intrusion carried a large amount of mantle-derived material and formed basic volcanic rocks in the Bohai Bay Basin and Songliao Basin, which replenished mantle-derived ~3He for the interior of the basins, and that strong seismic activities in and around the basins also promoted the upward migration of mantle source ~3He. This study suggests that the tectonic zone with dense volcanic rocks in the Cenozoic era and a high incidence of historical strong earthquakes history may be a potential area for helium resource exploration. 展开更多
关键词 HELIUM Bohai Bay basin destruction of the north china Craton FAULT Cenozoic volcanic rocks strong earthquake activity
下载PDF
Deep-large faults controlling on the distribution of the venting gas hydrate system in the middle of the Qiongdongnan Basin, South China Sea
3
作者 Jin-feng Ren Hai-jun Qiu +6 位作者 Zeng-gui Kuang Ting-wei Li Yu-lin He Meng-jie Xu Xiao-xue Wang Hong-fei Lai Jin Liang 《China Geology》 CAS CSCD 2024年第1期36-50,共15页
Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migra... Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates. 展开更多
关键词 Venting gas hydrates Deep-large faults Gas chimney Gas-escape pipes High-resolution 3D seismic Logging while drilling Qiongdongnan basin south china Sea
下载PDF
Spatial distribution and inventory of natural gas hydrate in the Qiongdongnan Basin,northern South China Sea 被引量:1
4
作者 Zhongxian ZHAO Ning QIU +4 位作者 Zhen SUN Wen YAN Genyuan LONG Pengchun LI Haiteng ZHUO 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期729-739,共11页
Natural gas hydrate is a potential clean energy source and is related to submarine geohazard,climate change,and global carbon cycle.Multidisciplinary investigations have revealed the occurrence of hydrate in the Qiong... Natural gas hydrate is a potential clean energy source and is related to submarine geohazard,climate change,and global carbon cycle.Multidisciplinary investigations have revealed the occurrence of hydrate in the Qiongdongnan Basin,northern South China Sea.However,the spatial distribution,controlling factors,and favorable areas are not well defined.Here we use the available high-resolution seismic lines,well logging,and heat flow data to explore the issues by calculating the thickness of gas hydrate stability zone(GHSZ)and estimating the inventory.Results show that the GHSZ thickness ranges between mostly~200 and 400 m at water depths>500 m.The gas hydrate inventory is~6.5×109-t carbon over an area of~6×104 km2.Three areas including the lower uplift to the south of the Lingshui sub-basin,the Songnan and Baodao sub-basins,and the Changchang sub-basin have a thick GHSZ of~250-310 m,250-330 m,and 350-400 m,respectively,where water depths are~1000-1600 m,1000-2000 m,and2400-3000 m,respectively.In these deep waters,bottom water temperatures vary slightly from~4 to 2℃.However,heat flow increases significantly with water depth and reaches the highest value of~80-100 mW/m2 in the deepest water area of Changchang sub-basin.High heat flow tends to reduce GHSZ thickness,but the thickest GHSZ still occurs in the Changchang sub-basin,highlighting the role of water depth in controlling GHSZ.The lower uplift to the south of the Lingshui sub-basin has high deposition rate(~270-830 m/Ma in 1.8-0 Ma);the thick Cenozoic sediment,rich biogenic and thermogenic gas supplies,and excellent transport systems(faults,diapirs,and gas chimneys)enables it a promising area of hydrate accumulation,from which hydrate-related bottom simulating reflectors,gas chimneys,and active cold seeps were widely revealed. 展开更多
关键词 gas hydrate stability zone gas hydrate inventory Qiongdongnan basin south china Sea
下载PDF
The sedimentary record of the Sanshui Basin:Implication to the Late Cretaceous tectonic evolution in the northern margin of South China Sea
5
作者 Zhe ZHANG Nianqiao FANG Zhen SUN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期532-549,共18页
Whether the South China continental margin had shifted from active subduction to passive extension in the Late Cretaceous remains controversial.Located in the northernmost of the South China Sea continental margin,San... Whether the South China continental margin had shifted from active subduction to passive extension in the Late Cretaceous remains controversial.Located in the northernmost of the South China Sea continental margin,Sanshui Basin developed continuous stratigraphy from Lower Cretaceous to Eocene and provides precious outcrops to study the regional tectonic evolution during the Cretaceous.Therefore,we conducted field observations,petrology,clay mineralogy,geochemistry,and detrital zircon chronology analyses of sedimentary rocks from the Upper Cretaceous Sanshui Formation in Sanshui Basin.Results suggest that the Sanshui Basin is characterized as an intermoutane basin with multiple provenances,strong hydrodynamic environment,and proximal accumulation in the Late Cretaceous.An angular unconformity at the boundary between the Lower and Upper Cretaceous was observed in the basin.The sedimentary facies of the northern basin changed from lacustrine sedimentary environment in the Early Cretaceous to alluvial facies in the Late Cretaceous.The zircon U-Pb ages of granitic gravelly sandstone from Sanshui Formation prominently range from 100 Ma to 300 Ma,which is close to the deposition age of Sanshui Formation.The major and trace elements of the Late Cretaceous sedimentary samples show characteristics of active continental margin,and are different from the Paleogene rifting sequences.Hence,we propose that the northern South China Sea margin underwent an intense tectonic uplift at the turn of the Early and Late Cretaceous(around 100 Ma).Afterward,the northern South China Sea margin entered a wide extension stage in the Late Cretaceous(~100 to~80 Ma).This extensional phase is related to the back-arc extension in the active continental margin environment,which is different from the later passive rifting in the Cenozoic.The transition from active subduction to passive extension in the northern South China Sea may occur between the late Late Cretaceous and the Paleogene. 展开更多
关键词 continental margin south china Sea Sanshui basin Late Cretaceous tectonic transition
下载PDF
Tectonic-thermal history and hydrocarbon potential of the Pearl River Mouth Basin,northern South China Sea:Insights from borehole apatite fission-track thermochronology
6
作者 Xiao-yin Tang Shu-chun Yang Sheng-biao Hu 《China Geology》 CAS CSCD 2023年第3期429-442,共14页
The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evoluti... The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evolution and for unraveling its poorly studied source-rock maturation history.Our investigations in this study are based on apatite fission-track(AFT)thermochronology analysis of 12 cutting samples from 4 boreholes.Both AFT ages and length data suggested that the PRMB has experienced quite complicated thermal evolution.Thermal history modeling results unraveled four successive events of heating separated by three stages of cooling since the early Middle Eocene.The cooling events occurred approximately in the Late Eocene,early Oligocene,and the Late Miocene,possibly attributed to the Zhuqiong II Event,Nanhai Event,and Dongsha Event,respectively.The erosion amount during the first cooling stage is roughly estimated to be about 455-712 m,with an erosion rate of 0.08-0.12 mm/a.The second erosion-driven cooling is stronger than the first one,with an erosion amount of about 747-814 m and an erosion rate between about 0.13-0.21 mm/a.The erosion amount calculated related to the third cooling event varies from 800 m to 3419 m,which is speculative due to the possible influence of the magmatic activity. 展开更多
关键词 Oil and gas Hydrocarbon potential Apatite fission-track Tectonic-thermal evolution thermal history modeling Cooling event Heating event Marine geological survey engineering Erosion amount and rate Oil-gas exploration engineering Pearl River Mouth basin the south china Sea
下载PDF
Formation of the Zengmu and Beikang Basins,and West Baram Line in the southwestern South China Sea margin
7
作者 Bing HAN Zhongxian ZHAO +7 位作者 Xiaofang WANG Zhen SUN Fucheng LI Benduo ZHU Yongjian YAO Liqiang LIU Tianyue PENG Genyuan LONG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期592-611,共20页
The Zengmu and Beikang basins,separated by the West Baram Line(WBL)in the southwestern South China Sea margin,display distinct geological and geophysical features.However,the nature of the basins and the WBL are debat... The Zengmu and Beikang basins,separated by the West Baram Line(WBL)in the southwestern South China Sea margin,display distinct geological and geophysical features.However,the nature of the basins and the WBL are debated.Here we explore this issue by conducting the stratigraphic and structural interpretation,faults and subsidence analysis,and lithospheric finite extension modelling using seismic data.Results show that the WBL is a trans-extensional fault zone comprising normal faults and flower structures mainly active in the Late Eocene to Early Miocene.The Zengmu Basin,to the southwest of the WBL,shows an overall synformal geometry,thick folded strata in the Late Eocene to Late Miocene(40.4-5.2 Ma),and pretty small normal faults at the basin edge,which imply that the Zengmu Basin is a foreland basin under the Luconia and Borneo collision in the Sarawak since the Eocene.Furthermore,the basin exhibits two stages of subsidence(fast in 40.4-30 Ma and slow in 30-0 Ma);but the amount of observed subsidence and heat flow are both greater than that predicted by crustal thinning.The Beikang Basin,to the NE of the WBL,consists of the syn-rift faulted sub-basins(45-16.4 Ma)and the post-rift less deformed sequences(16.4-0 Ma).The heat flow(~60 mW/m2)is also consistent with that predicted based on crustal thinning,inferring that it is a rifted basin.However,the basin shows three stages of subsidence(fast in 45-30 Ma,uplift in 30-16.4 Ma,and fast in 16.4-0 Ma).In the uplift stage,the strata were partly folded in the Late Oligocene and partly eroded in the Early Miocene,which is probably caused by the flexural bulging in response to the paleo-South China Sea subduction and the subsequent Dangerous Grounds and Borneo collision in the Sabah to the east of the WBL. 展开更多
关键词 tectonic subsidence foreland basin West Baram Line Zengmu basin Beikang basin south china Sea
下载PDF
Extensional structures of the Nan'an Basin in the rifting tip of the South China Sea: Implication for tectonic evolution of the southwestern continental margin
8
作者 Shi-Guo Wu Li Zhang +5 位作者 Zhen-Yu Lei Xing Qian Shuai-Bing Luo Xiang-Yang Lu Thomas Lüdmann Lei Tian 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期128-140,共13页
Nan'an Basin is a giant hydrocarbon basin,but its tectonic division scheme and associated fault systems has not been well understood.Based on newly acquired seismic data from the southwestern margin of the South C... Nan'an Basin is a giant hydrocarbon basin,but its tectonic division scheme and associated fault systems has not been well understood.Based on newly acquired seismic data from the southwestern margin of the South China Sea,this study analyzed the structural units,tectonic feature and geodynamics of the sedimentary basin.The new data suggests that the Nan0 an Basin is a rift basin oriented in the NE-SW direction,rather than a pull-apart basin induced by strike-slip faults along the western margin.The basin is a continuation of the rifts in the southwest South China Sea since the late Cretaceous.It continued rifting until the middle Miocene,even though oceanic crust occurred in the Southwest Subbasin.However,it had no transfer surface at the end of spreading,where it was characterized by a late middle Miocene unconformity(reflector T3).The Nan'an Basin can be divided into eight structural units by a series of NE-striking faults.This study provides evidences to confirm the relative importance and interplay between regional strike-slips and orthogonal displacement during basin development and deformation.The NE-SW-striking dominant rift basin indicates that the geodynamic drivers of tectonic evolution in the western margin of the South China Sea did not have a large strike-slip mechanism.Therefore,we conclude that a large strike-slip fault system did not exist in the western margin of the South China Sea. 展开更多
关键词 Sedimentary basin Seismic sequence RIFTinG Tectonic evolution south china Sea
下载PDF
Discovery of pockmarks in the Zengmu Basin,southern South China Sea and the implication
9
作者 Yanlin WANG Guanghong TU +4 位作者 Junhui YU Pin YAN Yongbin JIN Changliang CHEN Jie LIU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期757-768,共12页
The Zengmu Basin located in the shallow water area of the southern South China Sea,is rich in oil and gas resources,within which faults and mud-diapir are developed,but it is unknown whether oil and gas migrate to the... The Zengmu Basin located in the shallow water area of the southern South China Sea,is rich in oil and gas resources,within which faults and mud-diapir are developed,but it is unknown whether oil and gas migrate to the seafloor surface.The newly collected multibeam data across the Zengmu Basin reveal a large number of depressions,with depths of 2-4 m,widths of several tens of meters,large distribution range of 1.8-8 km along survey line,up to~50 km,and their backscatter intensity(-26 dB)is much greater than that of the surrounding area(-38 dB).Combined with the developed mud-diapir and fracture structures,and abundant oil and gas resources within this basin,these depressions are presumed to be pockmarks.Furthermore,more than 110 mono-sized small circular pockmarks,with a depth of less than 1 m and a width of 5 m,are observed in an area of less than 0.03 km2,which are not obliterated by sediment infilling with high sedimentation rate,implying an existence of unit-pockmarks that are or recently were active.In addition,seismic profiles across the Zengmu Basin show characterization of upward migration of hydrocarbons,expressed as mud-diapir structures,bright spots in the shallow formation with characteristics of“low frequency increase and high frequency attenuation”.The subbottom profiles show the mud-diapir structures,as well as the gas-bearing blank zones beneath the seafloor.These features suggest large gas leaking and occurrence of large amounts of carbonate nodules on the seafloor.This indicates the complex and variable substrate type in the Zengmu Basin,while the area was once thought to be mainly silty sand and find sand.This is the first report on the discovery of pockmarks in the Zengmu Basin;it will provide basic information for submarine stability and marine engineering in China’s maritime boundaries. 展开更多
关键词 south china Sea Zengmu basin dense pockmarks gas leaking substrate type
下载PDF
Sedimentary evolution and control factors of the Rizhao Canyons in the Zhongjiannan Basin, western South China Sea
10
作者 Meijing Sun Yongjian Yao +5 位作者 Weidong Luo Jie Liu Xiaosan Hu Jiao Zhou Dong Ju Ziying Xu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第9期16-26,共11页
Submarine canyon is an important channel for long-distance sediment transport, and an important part of deepwater sedimentary system. The large-scale Rizhao Canyons have been discovered for the first time in 2015 in t... Submarine canyon is an important channel for long-distance sediment transport, and an important part of deepwater sedimentary system. The large-scale Rizhao Canyons have been discovered for the first time in 2015 in the continental slope area of the western South China Sea. Based on the interpretation and analysis of multi-beam bathymetry and two-dimensional multi-channel seismic data, the geology of the canyons has however not been studied yet. In this paper, the morphology and distribution characteristics of the canyon are carefully described,the sedimentary filling structure and its evolution process of the canyon are analyzed, and then its controlling factors are discussed. The results show that Rizhao Canyons group is a large slope restricted canyon group composed of one east-west west main and nine branch canyons extending to the south. The canyon was formed from the late Miocene to the Quaternary. The east-west main canyon is located in the transition zone between the northern terrace and the southern Zhongjiannan Slope, and it is mainly formed by the scouring and erosion of the material source from the west, approximately along the slope direction. Its development and evolution is mainly controlled by sediment supply and topographic conditions, the development of 9 branch canyons is mainly controlled by gravity flow and collapse from the east-west main canyon. This understanding result is a supplement to the study of “source-channel–sink” sedimentary system in the west of the South China Sea, and has important guiding significance for the study of marine geological hazards. 展开更多
关键词 CANYON GEOMORPHOLOGY sedimentary evolution control factors Zhongjiannan basin western south china Sea
下载PDF
Evolutions of sedimentary facies and palaeoenvironment and their controls on the development of source rocks in continental margin basins:A case study from the Qiongdongnan Basin,South China Sea
11
作者 Kun Liu Peng Cheng +2 位作者 Cai-Wei Fan Peng Song Qiang-Tai Huang 《Petroleum Science》 SCIE EI CSCD 2023年第5期2648-2663,共16页
Hydrocarbon resources in the Qiongdongnan Basin have become an important exploration target in China.However,the development of high-quality source rocks in this basin,especially in its deep-water areas,are still not ... Hydrocarbon resources in the Qiongdongnan Basin have become an important exploration target in China.However,the development of high-quality source rocks in this basin,especially in its deep-water areas,are still not fully understood.In this study,evolutions of sedimentary facies and palaeoenvironment and their influences on the development of source rocks in diverse tectonic regions of the Qiongdongnan Basin were investigated.The results show that during the Oligocene and to Miocene periods,the sedimentary environment of this basin progressively varied from a semi-closed gulf to an open marine environment,which resulted in significant differences in palaeoenvironmental conditions of the water column for various tectonic regions of the basin.In shallow-water areas,the palaeoproductivity and reducibility successively decrease,and the hydrodynamic intensity gradually increases for the water columns of the Yacheng,Lingshui,and Sanya-Meishan strata.In deep-water areas,the water column of the Yacheng and Lingshui strata has a higher palaeoproductivity and a weaker hydrodynamic intensity than that of the Sanya-Meishan strata,while the reducibility gradually increases for the water columns of the Yacheng,Lingshui,and Sanya-Meishan strata.In general,the palaeoenvironmental conditions of the water column are the most favorable to the development of the Yacheng organic-rich source rocks.Meanwhile,the Miocene marine source rocks in the deep-water areas of the Qiongdongnan Basin may also have a certain hydrocarbon potential.The differences in the development models of source rocks in various tectonic regions of continental margin basins should be fully evaluated in the exploration and development of hydrocarbons. 展开更多
关键词 Sedimentary facies Palaeoenvironmental conditions EVOLUTIONS Source rocks the Qiongdongnan basin south china Sea
下载PDF
Genesis, evolution and reservoir identification of a Neogene submarine channel in the southwestern Qiongdongnan Basin, South China Sea
12
作者 Shuo Chen Donghui Jiang +4 位作者 Renhai Pu Yunwen Guan Xiaochuan Wu Tianyu Ji Chuang Liu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第5期57-78,共22页
A rarely reported middle-late Miocene-Pliocene channel(incised valley fill),the Huaguang Channel(HGC),has been found in the deep-water area of the southwestern Qiongdongnan Basin(QDNB).This channel is almost perpendic... A rarely reported middle-late Miocene-Pliocene channel(incised valley fill),the Huaguang Channel(HGC),has been found in the deep-water area of the southwestern Qiongdongnan Basin(QDNB).This channel is almost perpendicular to the orientation of another well-known,large,and nearly coeval submarine channel in this area.Based on the interpretation of high-resolution 3D seismic data,this study describes and analyzes the stratigraphy,tectonics,sedimentation,morphology,structure and evolution of HGC by means of well-seismic synthetic calibration,one-and two-dimensional forward modeling,attribute interpretation,tectonic interpretation,and gas detection.The HGC is located on the downthrown side of an earlier activated normal fault and grew northwestward along the fault strike.The channel is part of a slope that extends from the western Huaguang Sag to the eastern Beijiao Uplift.The HGC underwent four developmental stages:the(1)incubation(late Sanya Formation,20.4–15.5 Ma),(2)embryonic(Meishan Formation,15.5–10.5 Ma),(3)peak(Huangliu Formation,10.5–5.5 Ma)and(4)decline(Yinggehai Formation,5.5–1.9 Ma)stages.The channel sandstones have a provenance from the southern Yongle Uplift and filled the channel via multistage vertical amalgamation and lateral migration.The channel extended 42.5 km in an approximately straight pattern in the peak stage.At 10.5 Ma,sea level fell relative to its lowest level,and three oblique progradation turbidite sand bodies filled the channel from south to north.A channel sandstone isopach map demonstrated a narrow distribution in the early stages and a fan-shaped distribution in the late stage.The formation and evolution of the HGC were controlled mainly by background tectonics,fault strike,relative sea level change,and mass supply from the Yongle Uplift.The HGC sandstone reservoir is near the Huaguangjiao Sag,where hydrocarbons were generated.Channel-bounding faults and underlying faults link the source rock with the reservoir.A regionally extensive mudstone caprock overlies the channel sandstone.Two traps likely containing gas were recognized in a structural high upstream of the channel from seismic attenuation anomalies.The HGC will likely become an important oil and gas accumulation setting in the QDNB deep-water area. 展开更多
关键词 south china Sea Qiongdongnan basin submarine channel channel evolution reservoir identification
下载PDF
Geochemical characteristics of Sr isotopes in the LS33 drill core from the Qiongdongnan Basin, South China Sea, and their response to the uplift of the Tibetan Plateau
13
作者 Ke Wang Shikui Zhai +1 位作者 Zenghui Yu Huaijing Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第5期117-129,共13页
Making full use of modern analytical and testing techniques to explore and establish new indexes or methods for extracting paleoseawater geochemical information from sediments will help to reconstruct the sedimentary ... Making full use of modern analytical and testing techniques to explore and establish new indexes or methods for extracting paleoseawater geochemical information from sediments will help to reconstruct the sedimentary paleoenvironment in different research areas.The connection between the subsidence of the South China Sea basin and the uplift of the Tibetan Plateau has been a scientific concern in recent decades.To explore the information on the sedimentary paleoenvironment,provenance changes and uplift of Tibetan Plateau contained in core sediments(debris),we selected core samples from Well LS33 in the Qiongdongnan Basin,South China Sea,and analyzed the contents of typical elements(Al,Th,and rare earth elements)that can indicate changes in provenance and the Sr isotopic compositions,which can reveal the geochemical characteristics of the paleoseawater depending on the type of material(authigenic carbonate and terrigenous detritus).The results show the following:(1)during the late Miocene,the Red River transported a large amount of detrital sediments from the ancient continental block(South China)to the Qiongdongnan Basin.(2)The authigenic carbonates accurately record changes in the 87Sr/86Sr ratios in the South China Sea since the Oligocene.These ratios reflect the semi-closed marginal sea environment of the South China Sea(relative to the ocean)and the sedimentary paleoenvironment evolution process of the deep-water area of the Qiongdongnan Basin from continental to transitional and then to bathyal.(3)Since the Neogene,the variations in the 87Sr/86Sr ratio in the authigenic carbonates have been consistent with the variations in the uplift rate of the Tibetan Plateau and the sediment accumulation rate in the Qiongdongnan Basin.These consistent changes indicate the complex geological process of the change in the rock weathering intensity and terrigenous Sr flux caused by changes in the uplift rate of the Tibetan Plateau,which influence the Sr isotope composition of seawater. 展开更多
关键词 sediments from a drill core grouping analysis elements and Sr isotopes provenance and paleoenvironment uplift of the Tibetan Plateau and subsidence of the south china Sea basin
下载PDF
The main controlling factors and developmental models of Oligocene source rocks in the Qiongdongnan Basin,northern South China Sea 被引量:7
14
作者 Li Wenhao Zhang Zhihuan +2 位作者 Li Youchuan Liu Chao Fu Ning 《Petroleum Science》 SCIE CAS CSCD 2013年第2期161-170,共10页
Coals developed in the Oligocene Yacheng and Lingshui formations in the Qiongdongnan Basin have high organic matter abundance, and the dark mudstones in the two formations have reached a good source rock standard but ... Coals developed in the Oligocene Yacheng and Lingshui formations in the Qiongdongnan Basin have high organic matter abundance, and the dark mudstones in the two formations have reached a good source rock standard but with strong heterogeneity. Through the analysis of trace elements, organic macerals and biomarkers, it is indicated that plankton has made little contribution to Oligocene source rocks compared with the terrestrial higher plants. The organic matter preservation depends on hydrodynamics and the redox environment, and the former is the major factor in the study area. During the sedimentary period of the Yacheng Formation, tidal flats were developed in the central uplift zone, where the hydrodynamic conditions were weak and the input of terrestrial organic matter was abundant. So the Yacheng Salient of the central uplift zone is the most favorable area for the development of source rocks, followed by the central depression zone. During the sedimentary period of the Lingshui Formation, the organic matter input was sufficient in the central depression zone due to multiple sources of sediments. The semi-enclosed environment was favorable for organic matter accumulation, so high quality source rocks could be easily formed in this area, followed by the Yacheng salient of central uplift zone. Source rocks were less developed in the northern depression zone owing to poor preservation conditions, 展开更多
关键词 Hydrocarbon generation potential PALEOPRODUCTIVITY preservation conditions hydrodynamicconditions redox conditions Oligocene source rocks Qiongdongnan basin northern south china Sea
下载PDF
Plate tectonic control on the formation and tectonic migration of Cenozoic basins in northern margin of the South China Sea 被引量:16
15
作者 Pengcheng Wang Sanzhong Li +7 位作者 Yanhui Suo Lingli Guo Guangzeng Wang Gege Hui M.Santosh Ian D.Somerville Xianzhi Cao Yang Li 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第4期1231-1251,共21页
The tectonic evolution history of the South China Sea(SCS) is important for understanding the interaction between the Pacific Tectonic Domain and the Tethyan Tectonic Domain,as well as the regional tectonics and geody... The tectonic evolution history of the South China Sea(SCS) is important for understanding the interaction between the Pacific Tectonic Domain and the Tethyan Tectonic Domain,as well as the regional tectonics and geodynamics during the multi-plate convergence in the Cenozoic.Several Cenozoic basins formed in the northern margin of the SCS,which preserve the sedimentary tectonic records of the opening of the SCS.Due to the spatial non-uniformity among different basins,a systematic study on the various basins in the northern margin of the SCS constituting the Northern Cenozoic Basin Group(NCBG) is essential.Here we present results from a detailed evaluation of the spatial-temporal migration of the boundary faults and primary unconformities to unravel the mechanism of formation of the NCBG.The NCBG is composed of the Beibu Gulf Basin(BBGB),Qiongdongnan Basin(QDNB),Pearl River Mouth Basin(PRMB) and Taixinan Basin(TXNB).Based on seismic profiles and gravity-magnetic anomalies,we confirm that the NE-striking onshore boundary faults propagated into the northern margin of the SCS.Combining the fault slip rate,fault combination and a comparison of the unconformities in different basins,we identify NE-striking rift composed of two-stage rifting events in the NCBG:an early-stage rifting(from the Paleocene to the Early Oligocene) and a late-stage rifting(from the Late Eocene to the beginning of the Miocene).Spatially only the late-stage faults occurs in the western part of the NCBG(the BBGB,the QDNB and the western PRMB),but the early-stage rifting is distributed in the whole NCBG.Temporally,the early-stage rifting can be subdivided into three phases which show an eastward migration,resulting in the same trend of the primary unconformities and peak faulting within the NCBG.The late-stage rifting is subdivided into two phases,which took place simultaneously in different basins.The first and second phase of the early-stage rifting is related to back-arc extension of the Pacific subduction retreat system.The third phase of the earlystage rifting resulted from the joint effect of slab-pull force due to southward subduction of the proto-SCS and the back-arc extension of the Pacific subduction retreat system.In addition,the first phase of the late-stage faulting corresponds with the combined effect of the post-collision extension along the Red River Fault and slab-pull force of the proto-SCS subduction.The second phase of the late-stage faulting fits well with the sinistral faulting of the Red River Fault in response to the Indochina Block escape tectonics and the slab-pull force of the proto-SCS. 展开更多
关键词 northern Cenozoic basin group south china Sea NE-Striking fault Tectonic migration Pacific Plate Tethyan tectonic domain
下载PDF
Porosity model and pore evolution of transitional shales:an example from the Southern North China Basin 被引量:4
16
作者 Xiao-Guang Yang Shao-Bin Guo 《Petroleum Science》 SCIE CAS CSCD 2020年第6期1512-1526,共15页
The evolution of shale reservoirs is mainly related to two functions:mechanical compaction controlled by ground stress and chemical compaction controlled by thermal effect.Thermal simulation experiments were conducted... The evolution of shale reservoirs is mainly related to two functions:mechanical compaction controlled by ground stress and chemical compaction controlled by thermal effect.Thermal simulation experiments were conducted to simulate the chemical compaction of marine-continental transitional shale,and X-ray diffraction(XRD),CO2 adsorption,N2 adsorption and high-pressure mercury injection(MIP)were then used to characterize shale diagenesis and porosity.Moreover,simulations of mechanical compaction adhering to mathematical models were performed,and a shale compaction model was proposed considering clay content and kaolinite proportions.The advantage of this model is that the change in shale compressibility,which is caused by the transformation of clay minerals during thermal evolution,may be considered.The combination of the thermal simulation and compaction model may depict the interactions between chemical and mechanical compaction.Such interactions may then express the pore evolution of shale in actual conditions of formation.Accordingly,the obtained results demonstrated that shales having low kaolinite possess higher porosity at the same burial depth and clay mineral content,proving that other clay minerals such as illite-smectite mixed layers(I/S)and illite are conducive to the development of pores.Shales possessing a high clay mineral content have a higher porosity in shallow layers(<3500 m)and a lower porosity in deep layers(>3500 m).Both the amount and location of the increase in porosity differ at different geothermal gradients.High geothermal gradients favor the preservation of high porosity in shale at an appropriate Ro.The pore evolution of the marine-continental transitional shale is divided into five stages.Stage 2 possesses an Ro of 1.0%-1.6%and has high porosity along with a high specific surface area.Stage 3 has an Ro of 1.6%-2.0%and contains a higher porosity with a low specific surface area.Finally,Stage 4 has an Ro of 2.0%-2.9%with a low porosity and high specific surface area. 展开更多
关键词 thermal simulation Porosity model Pore evolution Transitional shale southern north china basin Shanxi formation
下载PDF
Peat formation and accumulation mechanism in northern marginal basin of South China Sea 被引量:3
17
作者 Zengxue Li Qingbo Zeng +5 位作者 Meng Xu Dongdong Wang Guangzeng Song Pingli Wang Xiaojing Li Xue Zheng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第2期95-106,共12页
In the present study,the coal-rock organic facies of Oligocene Yacheng Formation of the marginal basin in the South China Sea were classified and divided.In addition,through the correlations of the large-scale coal-be... In the present study,the coal-rock organic facies of Oligocene Yacheng Formation of the marginal basin in the South China Sea were classified and divided.In addition,through the correlations of the large-scale coal-bearing basins between the epicontinental sea and the South China Sea,it was concluded that the coal forming activities in the South China Sea presented particularity and complexity.Furthermore,the coal forming mechanisms also presented distinctiveness.The marginal basins in the South China Sea consist of several large and complex rift or depression basins,which are distributed at different tectonic positions in the South China Sea.Therefore,the marginal basins in the South China Sea are not simple traditional units with onshore continental slopes extending toward the deep sea.The marginal basins are known to consist of multi-level structures and distinctive types of basins which differ from the continental regions to the sea.During the Oligocene,the existing luxuriant plants and beneficial conditions assisted in the development of peat.Therefore,the Oligocene was the significant period for the formation and aggregation of the peat.However,the peat did not form in unified sedimentary dynamic fields,but instead displayed multi-level geographical units,multiple provenance areas,instability,and nonevent characteristics.As a result,the marginal basins in the South China Sea are characterized by non-uniform peat aggregation stages.In another words,the majority of the peat had entered the marine system in a dispersive manner and acted as part of the marine deposits,rather than during one or several suitable coal-forming stages.These peat deposits then became the main material source for hydrocarbon generation in all of the marginal basins of the South China Sea.The study will be of much significance for the hydrocarbon exploration in the marginal basins of the South China Sea. 展开更多
关键词 south china Sea marginal basins land-sea interactions peat dispersion OLIGOCENE
下载PDF
Seismic Recognition and Origin of Miocene Meishan Formation Contourite Deposits in the Southern Qiongdongnan Basin,Northern South China Sea 被引量:1
18
作者 FENG Yangwei REN Yan +3 位作者 LYU Chengfu ZHANG Peng CHEN Ying JIN Li 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第1期131-141,共11页
Research into the contourite deposits in the Upper Meishan Formation of the southern Qiongdongnan Basin in South China Sea is weak;their characteristics,distribution and original geological conditions are not clear.Us... Research into the contourite deposits in the Upper Meishan Formation of the southern Qiongdongnan Basin in South China Sea is weak;their characteristics,distribution and original geological conditions are not clear.Using geologic al and geophysical methods including seismic and drilling data,based on seismic reflection characteristics,geometrical configuration description,and wave impedance inversion,two types of contourite deposits are recognized.Contourite deposits have blurred boundaries between each deposit and disordered internal seismic reflections;They are mound-shaped only in transverse section,and banded in the longitudinal direction.TypeⅠcontourite deposits are conical,with mediumhigh amplitude,low-continuity,low-frequency mound-shaped seismic facies,and subparallel-chaotic reflections internally.These deposits are conical with sharp tops,the canal between mounds is V-shaped and deep.The western wing is gentle and the eastern wing is steep,with the slope toe mostly between 10°and 20°,and width height ratio about 1-2.TypeⅡcontourite deposits are flat,exhibiting medium-amplitude,medium-continuity,low-frequency mound-shaped seismic facies,with subparallel weak reflections internally.Their mounds are flat with gently arced tops,with shallow canals between.The slope toe is between 5°and 10°,with a width height ratio of about 2-5.The wave impedance value of these contourite deposits is 4.6 kg/m^(3)×m/s to 6.8 kg/m^(3)×m/s,about 5.8 kg/m^(3)×m/s on average,which is presumed to represent marlycalcareous clastic sediments.The contourite deposits mainly develop beneath the slope break at the margin of the faultcontrolled platform in the Southern Uplift zone of the basin.In plane view,they are distributed approaching a west-to-east direction,and in section,lie in low-lying areas near the faults at fault-controlled terraces of the Southern Uplift zone,with a paleo-current direction nearly west-to-east.The paleotectonic setting of the gentle monoclinic platform was favorable for the development of such contourite deposits.The intensification of the Mid-Miocene deepest bottom current gave rise to the contourite-forming currents around the Southern Uplift zone in the northern South China Sea,which flow from Hainan Island to the Xisha Trough in a nearly west-to-east direction leading to the contourite deposits developing in the late MidMiocene transgressive environment,with multiple slow sea-level fall cycles. 展开更多
关键词 CONTOURITES seismic reflection characteristics MIOCENE Qiongdongnan basin south china
下载PDF
Reservoir characteristics and formation model of Upper Carboniferous bauxite series in eastern Ordos Basin,NW China
19
作者 LI Yong WANG Zhuangsen +2 位作者 SHAO Longyi GONG Jiaxun WU Peng 《Petroleum Exploration and Development》 SCIE 2024年第1期44-53,共10页
Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore charact... Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems. 展开更多
关键词 north china Craton eastern Ordos basin Upper Carboniferous bauxite series reservoir characteristics formation model gas accumulation
下载PDF
Types of the Continental Slope System Since Miocene in Qiongdongnan Basin,Offshore Hainan,Northern South China Sea
20
作者 Yunlong He~1,Xinong Xie~1,Ming Su~1,Tao Jiang~1,Chen Zhang~1,Shanshan Tian~1,Junliang Li~2 1.Faculty of Earth Resources,China University of Geosciences(Wuhan),Wuhan 430074,China. 2.Department of Technology,Zhanjiang Branch of CNOOC,Zhanjiang 524057,China 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期226-226,共1页
Very high resolution seismic record were used to study the sedimentary processes and morphosedimentary features of the continental slope system since Miocene in Qiongdongnan Basin(QDNB),offshore Hainan,northern South ... Very high resolution seismic record were used to study the sedimentary processes and morphosedimentary features of the continental slope system since Miocene in Qiongdongnan Basin(QDNB),offshore Hainan,northern South China Sea.It can be divided into four types based on the sedimentary processes and morphology:wide and gentle slope,sigmoid-progradational slope,slumping slope and channeled slope.Different features of 展开更多
关键词 CONTinENTAL slope system MIOCENE Qiongdongnan basin south china Sea
下载PDF
上一页 1 2 76 下一页 到第
使用帮助 返回顶部