Objective The Yubei area is located in the mid-east Maigaiti slope of southwestern Tarim Basin, China, with an exploration history of several years. Recent exploration has preliminarily indicated that the Ordovician ...Objective The Yubei area is located in the mid-east Maigaiti slope of southwestern Tarim Basin, China, with an exploration history of several years. Recent exploration has preliminarily indicated that the Ordovician carbonate formations in this area have some oil and gas potential. Carbonate microfacies provides material basis for reservoir development, seal formation and hydrocarbon generation. Therefore, this work utilized the standard microfacies (SMF) types to study the microfacies of the Ordovician formations in the Yubei area in order to provide theoretical basis for the next exploration.展开更多
The Bohai Bay Basin is a typical oil-prone basin, in which natural gas geological reserves have a small proportion. In this basin, the gas source rock is largely medium-deep lake mudstone with oil-prone type Ⅱ2-Ⅱ1 k...The Bohai Bay Basin is a typical oil-prone basin, in which natural gas geological reserves have a small proportion. In this basin, the gas source rock is largely medium-deep lake mudstone with oil-prone type Ⅱ2-Ⅱ1 kerogens, and natural gas preservation conditions are poor due to active late tectonic movements. The formation conditions of large natural gas fields in the Bohai Bay Basin have been elusive. Based on the exploration results of Bohai Bay Basin and comparison with large gas fields in China and abroad, the formation conditions of conventional large-scale natural gas reservoirs in the Bohai Bay Basin were examined from accumulation dynamics, structure and sedimentation. The results show that the formation conditions of conventional large natural gas reservoirs in Bohai Bay Basin mainly include one core element and two key elements. The core factor is the strong sealing of Paleogene "quilt-like" overpressure mudstone. The two key factors include the rapid maturation and high-intensity gas generation of source rock in the late stage and large scale reservoir. On this basis, large-scale nature gas accumulation models in the Bohai Bay Basin have been worked out, including regional overpressure mudstone enriching model, local overpressure mudstone depleting model, sand-rich sedimentary subsag depleting model and late strongly-developed fault depleting model. It is found that Bozhong sag, northern Liaozhong sag and Banqiao sag have favorable conditions for the formation of large-scale natural gas reservoirs, and are worth exploring. The study results have important guidance for exploration of large scale natural gas reservoirs in the Bohai Bay Basin.展开更多
Objective The Huashan group(composed of the lower Hongshansi Formation and the upper Liufangzui Formation)is an important Neoproterozoic stratigraphic unit along the northern margin of the Yangtze Block.Previous doc...Objective The Huashan group(composed of the lower Hongshansi Formation and the upper Liufangzui Formation)is an important Neoproterozoic stratigraphic unit along the northern margin of the Yangtze Block.Previous documents have focused on the geochronological and geochemical aspects of the Neoproterozoic sedimentary basin in the Dahongshan region.However.展开更多
Interesting classifications of basinogenesis and basins were proposed by many scientists. They classified basinogenesis and basins mainly from a single angle, either from a historical angle or from a dynamic angle . I...Interesting classifications of basinogenesis and basins were proposed by many scientists. They classified basinogenesis and basins mainly from a single angle, either from a historical angle or from a dynamic angle . In order to more comprehensively understand them for more effectively guiding prospecting and exploration, the author integrates the two methods of analysis with each other and proposes an integrative classification .According to the historical - dynamic integrative classification,basinogenesis and basins can be.di-vided into three types :oceanic crust type ,embryo-continental (transitional )crust type and continental crust type .Oceanic crust type can be subdivided into mobile region type (mainly tenskmal )and stable region type . Embryo-continental type includes pre-geosynclinal type (divisible into several mobile region types and stable region types with tensional type predominating among mobile region types ) and ear ly-geosynclinal type (mainly tenskmal ) .Continental crust type includes late- geosynclinal (fold belt)type (compressional or tenskmal ),platform type (mainly sinking and rarely tenskmal subsidence-aulacogen)and geodepression (diwa )type (compressional , tenskmal or compresskmal-tenskmal ).展开更多
The occurrence of coal-bearing strata in a variety of coal-bearing basins of China is characterized by late tectonic deformation and remarkable spatial and geochronologic differences.The main controlling factors,which...The occurrence of coal-bearing strata in a variety of coal-bearing basins of China is characterized by late tectonic deformation and remarkable spatial and geochronologic differences.The main controlling factors,which determine the tectonic framework of coalfields,include the geodynamic environment,tectonic evolution,deep structures,tectonic stress,and lithologic combination of the coal measures.The Chinese continent has experienced multi-stage tectonic movements since the Late Paleozoic.The spatial and temporal heterogeneity of its continental tectonic evolution,the complexity of its basement properties,and its stratigraphic configurations control the tectonic framework of its coalfields’present complex and orderly patterns.The concept of coal occurrence structural units is proposed in this paper and is defined as the structural zoning of coal occurrence.China’s coalfields are divided into five coal occurrence structural areas,and the structural characteristics of the coalfields in five main coal occurrence areas throughout the country are summarized.Based on the analysis of the relationship between the structure characteristics and occurrence of coal in these coalfields,the coal-controlling structures are divided into six groups:extensional structural styles,compressional structural styles,shearing and rotational structural styles,inverted structural styles,sliding structural styles,and syn-depositional structural styles.In addition,the distribution of coal-controlling structural styles is briefly summarized in this paper.展开更多
This paper discusses the reservoir space in carbonate rocks in terms of types,combination features,distribution regularity,and controlling factors,based on core observations and tests of the North Truva Oilfield,Caspi...This paper discusses the reservoir space in carbonate rocks in terms of types,combination features,distribution regularity,and controlling factors,based on core observations and tests of the North Truva Oilfield,Caspian Basin.According to the reservoir space combinations,carbonate reservoirs can be divided into four types,i.e.,pore,fracture-pore,pore-cavity-fracture,and pore-cavity.Formation and distribution of these reservoirs is strongly controlled by deposition,diagenesis,and tectonism.In evaporated platform and restricted platform facies,the reservoirs are predominately affected by meteoric fresh water leaching in the supergene-para-syngenetic period and by uplifting and erosion in the late stage,making both platform facies contain all the above-mentioned four types of reservoirs,with various pores,such as dissolved cavities and dissolved fractures,or structural fractures occasionally in favorable structural locations.In open platform facies,the reservoirs deposited continuously in deeper water,in an environment of alternative high-energy shoals(where pore-fracture-type reservoirs are dominant) and low-energy shoals(where pore reservoirs are dominant).展开更多
An auriferous ore deposit of industrial scale was discovered by the authors in carbon-aceous rock series or the Jiao-Lai Basin on the North China Platform. The carbonaceousrock series is developed at the bottom of the...An auriferous ore deposit of industrial scale was discovered by the authors in carbon-aceous rock series or the Jiao-Lai Basin on the North China Platform. The carbonaceousrock series is developed at the bottom of the Cretaceous Laiyang Group which is over 270mthick, and overlies unconformably the Archaean-Proterozoic metamorphic rocks. The展开更多
Over the last two decades great strides have been made in characterizing the spatial distribution, time sequence,geochemical characteristics, mantle sources, and magma evolution processes for various igneous rocks in ...Over the last two decades great strides have been made in characterizing the spatial distribution, time sequence,geochemical characteristics, mantle sources, and magma evolution processes for various igneous rocks in the Early Permian Tarim Large Igneous Province(TLIP). This work has laid a solid foundation for revealing the evolutionary processes and genetic models of large igneous provinces(LIPs). This study systematically demonstrates the two-stage melting model for the TLIP based on our previous research work and predecessor achievements, and highlights the two types of magmatic rocks within the TLIP.The two-stage melting model suggests that the formation of the TLIP is mantle plume related. The early hot mantle plume caused the low-degree partial melting of the lithosphere mantle, while in the later stage, the plume partially melted due to adiabatic uplift and decompression. Therefore, this model carries signatures of both the "Parana" and "Deccan" models in terms of mantle plume activity. During the early stage, the mantle plume provided the heat required for partial melting of sub-continental lithosphere mantle(SCLM), similar to the "Parana Model", while later the plume acted as the main avenue for melting, as in the "Deccan Model". Basalts that erupted in the first stage have higher 87Sr/86 Sr, lower 143Nd/144 Nd ratios, and are enriched in large ion lithophile elements and high field strength elements, indicating a possible origin from the enriched continental lithosphere mantle,similar to the Parana type geochemical features. The basic-ultrabasic intrusive rocks in the second stage exhibit lower 87Sr/86 Sr,higher 143Nd/144 Nd ratios relative to the basalts, consistent with the involvement of a more depleted asthenospheric material,such as a mantle plume, similar to the Deccan type geochemical features. The first stage basalts can be further subdivided into two categories, i.e., Group 1 and Group 2 basalts. Group 2 basalts have lower 87Sr/86 Sr and higher 143Nd/144 Nd ratios than Group 1 basalts, and lie between compositions of the Group 1 basalts and second stage magmatism. Group 2 basalts may be the intermediate component of the TLIP, and the whole TLIP is the result of plume and lithosphere interaction. Developing this petrogenetic model for the TLIP aids in comprehensively understanding its magmatism and deep geological and geodynamic processes. Furthermore, this work enriches the theories describing the origin of large igneous province and mantle plume activity.展开更多
基金funded by the National Natural Science Foundation of China(grant No.41572117)Technological&Developmental Department of China Petroleum&Chemical Corporation(grants No.P13040 and P14128)China Geological Survey(grant No.DD20160175-1-1)
文摘Objective The Yubei area is located in the mid-east Maigaiti slope of southwestern Tarim Basin, China, with an exploration history of several years. Recent exploration has preliminarily indicated that the Ordovician carbonate formations in this area have some oil and gas potential. Carbonate microfacies provides material basis for reservoir development, seal formation and hydrocarbon generation. Therefore, this work utilized the standard microfacies (SMF) types to study the microfacies of the Ordovician formations in the Yubei area in order to provide theoretical basis for the next exploration.
基金Supported by the China National Science and Technology Major Project (2016ZX05024-003)
文摘The Bohai Bay Basin is a typical oil-prone basin, in which natural gas geological reserves have a small proportion. In this basin, the gas source rock is largely medium-deep lake mudstone with oil-prone type Ⅱ2-Ⅱ1 kerogens, and natural gas preservation conditions are poor due to active late tectonic movements. The formation conditions of large natural gas fields in the Bohai Bay Basin have been elusive. Based on the exploration results of Bohai Bay Basin and comparison with large gas fields in China and abroad, the formation conditions of conventional large-scale natural gas reservoirs in the Bohai Bay Basin were examined from accumulation dynamics, structure and sedimentation. The results show that the formation conditions of conventional large natural gas reservoirs in Bohai Bay Basin mainly include one core element and two key elements. The core factor is the strong sealing of Paleogene "quilt-like" overpressure mudstone. The two key factors include the rapid maturation and high-intensity gas generation of source rock in the late stage and large scale reservoir. On this basis, large-scale nature gas accumulation models in the Bohai Bay Basin have been worked out, including regional overpressure mudstone enriching model, local overpressure mudstone depleting model, sand-rich sedimentary subsag depleting model and late strongly-developed fault depleting model. It is found that Bozhong sag, northern Liaozhong sag and Banqiao sag have favorable conditions for the formation of large-scale natural gas reservoirs, and are worth exploring. The study results have important guidance for exploration of large scale natural gas reservoirs in the Bohai Bay Basin.
基金financially supported by the National Natural Science Foundation of China(grant No. 41402103,41502114 and 41372124)
文摘Objective The Huashan group(composed of the lower Hongshansi Formation and the upper Liufangzui Formation)is an important Neoproterozoic stratigraphic unit along the northern margin of the Yangtze Block.Previous documents have focused on the geochronological and geochemical aspects of the Neoproterozoic sedimentary basin in the Dahongshan region.However.
文摘Interesting classifications of basinogenesis and basins were proposed by many scientists. They classified basinogenesis and basins mainly from a single angle, either from a historical angle or from a dynamic angle . In order to more comprehensively understand them for more effectively guiding prospecting and exploration, the author integrates the two methods of analysis with each other and proposes an integrative classification .According to the historical - dynamic integrative classification,basinogenesis and basins can be.di-vided into three types :oceanic crust type ,embryo-continental (transitional )crust type and continental crust type .Oceanic crust type can be subdivided into mobile region type (mainly tenskmal )and stable region type . Embryo-continental type includes pre-geosynclinal type (divisible into several mobile region types and stable region types with tensional type predominating among mobile region types ) and ear ly-geosynclinal type (mainly tenskmal ) .Continental crust type includes late- geosynclinal (fold belt)type (compressional or tenskmal ),platform type (mainly sinking and rarely tenskmal subsidence-aulacogen)and geodepression (diwa )type (compressional , tenskmal or compresskmal-tenskmal ).
基金This study was financially supported by the Geological Survey Project of China Geological Survey National Potential Evaluation of Coal Resources project(121211121043)the National Natural Science Foundation of China(41572141,41772156).
文摘The occurrence of coal-bearing strata in a variety of coal-bearing basins of China is characterized by late tectonic deformation and remarkable spatial and geochronologic differences.The main controlling factors,which determine the tectonic framework of coalfields,include the geodynamic environment,tectonic evolution,deep structures,tectonic stress,and lithologic combination of the coal measures.The Chinese continent has experienced multi-stage tectonic movements since the Late Paleozoic.The spatial and temporal heterogeneity of its continental tectonic evolution,the complexity of its basement properties,and its stratigraphic configurations control the tectonic framework of its coalfields’present complex and orderly patterns.The concept of coal occurrence structural units is proposed in this paper and is defined as the structural zoning of coal occurrence.China’s coalfields are divided into five coal occurrence structural areas,and the structural characteristics of the coalfields in five main coal occurrence areas throughout the country are summarized.Based on the analysis of the relationship between the structure characteristics and occurrence of coal in these coalfields,the coal-controlling structures are divided into six groups:extensional structural styles,compressional structural styles,shearing and rotational structural styles,inverted structural styles,sliding structural styles,and syn-depositional structural styles.In addition,the distribution of coal-controlling structural styles is briefly summarized in this paper.
基金supported by the National Major Science and Technology Project (No.2016ZX05030002)
文摘This paper discusses the reservoir space in carbonate rocks in terms of types,combination features,distribution regularity,and controlling factors,based on core observations and tests of the North Truva Oilfield,Caspian Basin.According to the reservoir space combinations,carbonate reservoirs can be divided into four types,i.e.,pore,fracture-pore,pore-cavity-fracture,and pore-cavity.Formation and distribution of these reservoirs is strongly controlled by deposition,diagenesis,and tectonism.In evaporated platform and restricted platform facies,the reservoirs are predominately affected by meteoric fresh water leaching in the supergene-para-syngenetic period and by uplifting and erosion in the late stage,making both platform facies contain all the above-mentioned four types of reservoirs,with various pores,such as dissolved cavities and dissolved fractures,or structural fractures occasionally in favorable structural locations.In open platform facies,the reservoirs deposited continuously in deeper water,in an environment of alternative high-energy shoals(where pore-fracture-type reservoirs are dominant) and low-energy shoals(where pore reservoirs are dominant).
文摘An auriferous ore deposit of industrial scale was discovered by the authors in carbon-aceous rock series or the Jiao-Lai Basin on the North China Platform. The carbonaceousrock series is developed at the bottom of the Cretaceous Laiyang Group which is over 270mthick, and overlies unconformably the Archaean-Proterozoic metamorphic rocks. The
基金supported by the Natural Science Foundation of Zhejiang Province(Grant No.LY17D020001)the Fundamental Research Program(Grant Nos.JG1518&2017QNA3015)the National Natural Science Foundation of China(Grant Nos.41506070,41603029)
文摘Over the last two decades great strides have been made in characterizing the spatial distribution, time sequence,geochemical characteristics, mantle sources, and magma evolution processes for various igneous rocks in the Early Permian Tarim Large Igneous Province(TLIP). This work has laid a solid foundation for revealing the evolutionary processes and genetic models of large igneous provinces(LIPs). This study systematically demonstrates the two-stage melting model for the TLIP based on our previous research work and predecessor achievements, and highlights the two types of magmatic rocks within the TLIP.The two-stage melting model suggests that the formation of the TLIP is mantle plume related. The early hot mantle plume caused the low-degree partial melting of the lithosphere mantle, while in the later stage, the plume partially melted due to adiabatic uplift and decompression. Therefore, this model carries signatures of both the "Parana" and "Deccan" models in terms of mantle plume activity. During the early stage, the mantle plume provided the heat required for partial melting of sub-continental lithosphere mantle(SCLM), similar to the "Parana Model", while later the plume acted as the main avenue for melting, as in the "Deccan Model". Basalts that erupted in the first stage have higher 87Sr/86 Sr, lower 143Nd/144 Nd ratios, and are enriched in large ion lithophile elements and high field strength elements, indicating a possible origin from the enriched continental lithosphere mantle,similar to the Parana type geochemical features. The basic-ultrabasic intrusive rocks in the second stage exhibit lower 87Sr/86 Sr,higher 143Nd/144 Nd ratios relative to the basalts, consistent with the involvement of a more depleted asthenospheric material,such as a mantle plume, similar to the Deccan type geochemical features. The first stage basalts can be further subdivided into two categories, i.e., Group 1 and Group 2 basalts. Group 2 basalts have lower 87Sr/86 Sr and higher 143Nd/144 Nd ratios than Group 1 basalts, and lie between compositions of the Group 1 basalts and second stage magmatism. Group 2 basalts may be the intermediate component of the TLIP, and the whole TLIP is the result of plume and lithosphere interaction. Developing this petrogenetic model for the TLIP aids in comprehensively understanding its magmatism and deep geological and geodynamic processes. Furthermore, this work enriches the theories describing the origin of large igneous province and mantle plume activity.