期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Polarimetry feature parameter deriving from Mueller matrix imaging and auto-diagnostic signicance to distinguish HSIL and CSCC 被引量:1
1
作者 Anli Hou Xingjian Wang +5 位作者 Yujuan Fan Wenbin Miao Yang Dong Xuewu Tian Jibin Zou Hui Ma 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2022年第1期17-28,共12页
High-grade squamous intraepithelial lesion(HSIL)is regarded as a serious precancerous state of cervix,and it is easy to progress into cervical invasive carcinoma which highlights the importance of earlier diagnosis an... High-grade squamous intraepithelial lesion(HSIL)is regarded as a serious precancerous state of cervix,and it is easy to progress into cervical invasive carcinoma which highlights the importance of earlier diagnosis and treatment of cervical lesions.Pathologists examine the biopsied cervical epithelial tissue through a microscope.The pathological examination will take a long time and sometimes results in high inter-and intra-observer variability in outcomes.Polarization imaging techniques have broad application prospects for biomedical diagnosis such as breast,liver,colon,thyroid and so on.In our team,we have derived polarimetry feature parameters(PFPs)to characterize microstructural features in histological sections of breast tissues,and the accuracy for PFPs ranges from 0.82 to 0.91.Therefore,the aim of this paper is to distinguish automatically microstructural features between HSIL and cervical squamous cell carcinoma(CSCC)by means of polarization imaging techniques,and try to provide quantitative reference index for patho-logical diagnosis which can alleviate the workload of pathologists.Polarization images of the H&E stained histological slices were obtained by Mueller matrix microscope.The typical path-ological structure area was labeled by two experienced pathologists.Calculate the polarimetry basis parameter(PBP)statistics for this region.The PBP statistics(stat PBPs)are screened by mutual information(MI)method.The training method is based on a linear discriminant analysis(LDA)classier whichnds the most simplied linear combination from these stat PBPs and the accuracy remains constant to characterize the specic microstructural feature quantitatively in cervical squamous epithelium.We present results from 37 clinical patients with analysis regions of cervical squamous epithelium.The accuracy of PFP for recognizing HSIL and CSCC was 83.8%and 87.5%,respectively.This work demonstrates the ability of PFP to quantitatively charac-terize the cervical squamous epithelial lesions in the H&E pathological sections.Signicance:Polarization detection technology provides an effcient method for digital pathological diagnosis and points out a new way for automatic screening of pathological sections. 展开更多
关键词 Polarimetry basis parameter(PBP) polarimetry feature parameter(PFP) linear discriminant analysis(LDA) mutual information(MI) high-grade squamous intraepithelial le-sion(HSIL) cervical squamous cell carcinoma(CSCC).
下载PDF
Bézier curves with shape parameter 被引量:5
2
作者 王文涛 汪国昭 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第6期497-501,共5页
In this paper, Bézier basis with shape parameter is constructed by an integral approach. Based on this basis, we define the Bézier curves with shape parameter. The Bézier basis curves with shape paramet... In this paper, Bézier basis with shape parameter is constructed by an integral approach. Based on this basis, we define the Bézier curves with shape parameter. The Bézier basis curves with shape parameter have most properties of Bernstein basis and the Bézier curves. Moreover the shape parameter can adjust the curves’ shape with the same control polygon. As the increase of the shape parameter, the Bézier curves with shape parameter approximate to the control polygon. In the last, the Bézier surface with shape parameter is also constructed and it has most properties of Bézier surface. 展开更多
关键词 Bézier curve Bézier basis with shape parameter Bernstein basis
下载PDF
Identification of serous ovarian tumors based on polarization imaging and correlation analysis with clinicopathological features
3
作者 Yulu Huang Anli Hou +7 位作者 Jing Wang Yue Yao Wenbin Miao Xuewu Tian Jiawen Yu Cheng Li Hui Ma Yujuan Fan 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2023年第5期33-46,共14页
Ovarian cancer is one of the most aggressive and heterogeneous female tumors in the world,and serous ovarian cancer(SOC)is of particular concern for being the leading cause of ovarian cancer death.Due to its clinical ... Ovarian cancer is one of the most aggressive and heterogeneous female tumors in the world,and serous ovarian cancer(SOC)is of particular concern for being the leading cause of ovarian cancer death.Due to its clinical and biological complexities,ovarian cancer is still considered one of the most di±cult tumors to diagnose and manage.In this study,three datasets were assembled,including 30 cases of serous cystadenoma(SCA),30 cases of serous borderline tumor(SBT),and 45 cases of serous adenocarcinoma(SAC).Mueller matrix microscopy is used to obtain the polarimetry basis parameters(PBPs)of each case,combined with a machine learning(ML)model to derive the polarimetry feature parameters(PFPs)for distinguishing serous ovarian tumor(SOT).The correlation between the mean values of PBPs and the clinicopathological features of serous ovarian cancer was analyzed.The accuracies of PFPs obtained from three types of SOT for identifying dichotomous groups(SCA versus SAC,SCA versus SBT,and SBT versus SAC)were 0.91,0.92,and 0.8,respectively.The accuracy of PFP for identifying triadic groups(SCA versus SBT versus SAC)was 0.75.Correlation analysis between PBPs and the clinicopathological features of SOC was performed.There were correlations between some PBPs(δ,β,q_(L),E_(2),rqcross,P_(2),P_(3),P_(4),and P_(5))and clinicopathological features,including the International Federation of Gynecology and Obstetrics(FIGO)stage,pathological grading,preoperative ascites,malignant ascites,and peritoneal implantation.The research showed that PFPs extracted from polarization images have potential applications in quantitatively differentiating the SOTs.These polarimetry basis parameters related to the clinicopathological features of SOC can be used as prognostic factors. 展开更多
关键词 Serous ovarian tumor(SOT) polarimetry basis parameter(PBP) polarimetry feature parameter(PFP) polarization imaging machine learning(ML).
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部