Batch extractive distillation was studied in a column with amiddle vessel. The process was simulated by a constant holdup modeland solved by two point implicit method. Acetone and methanol mixturewas separated in such...Batch extractive distillation was studied in a column with amiddle vessel. The process was simulated by a constant holdup modeland solved by two point implicit method. Acetone and methanol mixturewas separated in such a setup using water as solvent. The simulationagrees well with experimental results. The experimental andsimulation results show that the solvent at the bottom and theproduct at the top of the column can be withdrawn simulataneously fora long period of time. It needs more time for the solvent to reachhigh purity than that required for the more volatile component toreach high purity, so that the time to withdraw solvent from thebottom is delayed.展开更多
Azeotropic liquid mixture cannot be separated by conventional distillation. But extractive distillation or combination of the two can be valid for them. An experiment to separate benzene and cyclohexane by batch extra...Azeotropic liquid mixture cannot be separated by conventional distillation. But extractive distillation or combination of the two can be valid for them. An experiment to separate benzene and cyclohexane by batch extractive distillation was carried out with N, N-dimethylformide (DMF), dime- thyl sulfoxide (DMSO) and their mixture as extractive solvent. The effect of the operation parameters such as solvent flow rate and reflux ratio on the separation was studied under the same operating conditions. The results show that the separation effect was improved with the increase of solvent flow rate and the reflux ratio; all the three extractive solvents can separate benzene and cyciohexane, with DMF being the most efficient one, the mixture the second, and DMSO the least. In the experiment the best operation conditions are with DMF as extractive solvent, the solvent flow rate being 12.33 mUmin, and the reflux ratio being 6. As a result, we can get cyclohexane from the top of tower with the average product content being 86.98%, and its recovering ratio being 83.10%.展开更多
The batch extractive distillation (BED) process has the advantages of both batch and extractive distillation. It is one of the most promising means for the separation of azeotropic and close-boiling point systems. How...The batch extractive distillation (BED) process has the advantages of both batch and extractive distillation. It is one of the most promising means for the separation of azeotropic and close-boiling point systems. However, so far this process has not been applied in industry due to its over-complexity. A new shortcut model was proposed to simulate the operation of the batch extractive distillation operations. This algorithm is based on the assumption that the batch extractive distillation column can be considered as a continuous extractive distillation column with changing feed at any time. Namely, the whole batch process is simulated as a succession of a finite number of steady states of short duration, in which holdup is considered as constant mole. For each period of time the batch extractive distillation process is solved through the algorithm for continuous extractive distillation. Finally, the practical implementation of the shortcut model is discussed and data from the laboratory and literature are presented. It is found that this model has better adaptability, more satisfactory accuracy and less calculative load than previous rigorous model. Hence the algorithm for simulating BED is verified.展开更多
文摘Batch extractive distillation was studied in a column with amiddle vessel. The process was simulated by a constant holdup modeland solved by two point implicit method. Acetone and methanol mixturewas separated in such a setup using water as solvent. The simulationagrees well with experimental results. The experimental andsimulation results show that the solvent at the bottom and theproduct at the top of the column can be withdrawn simulataneously fora long period of time. It needs more time for the solvent to reachhigh purity than that required for the more volatile component toreach high purity, so that the time to withdraw solvent from thebottom is delayed.
文摘Azeotropic liquid mixture cannot be separated by conventional distillation. But extractive distillation or combination of the two can be valid for them. An experiment to separate benzene and cyclohexane by batch extractive distillation was carried out with N, N-dimethylformide (DMF), dime- thyl sulfoxide (DMSO) and their mixture as extractive solvent. The effect of the operation parameters such as solvent flow rate and reflux ratio on the separation was studied under the same operating conditions. The results show that the separation effect was improved with the increase of solvent flow rate and the reflux ratio; all the three extractive solvents can separate benzene and cyciohexane, with DMF being the most efficient one, the mixture the second, and DMSO the least. In the experiment the best operation conditions are with DMF as extractive solvent, the solvent flow rate being 12.33 mUmin, and the reflux ratio being 6. As a result, we can get cyclohexane from the top of tower with the average product content being 86.98%, and its recovering ratio being 83.10%.
基金Supported by National Development and Reform Commission (2005 No1899)
文摘The batch extractive distillation (BED) process has the advantages of both batch and extractive distillation. It is one of the most promising means for the separation of azeotropic and close-boiling point systems. However, so far this process has not been applied in industry due to its over-complexity. A new shortcut model was proposed to simulate the operation of the batch extractive distillation operations. This algorithm is based on the assumption that the batch extractive distillation column can be considered as a continuous extractive distillation column with changing feed at any time. Namely, the whole batch process is simulated as a succession of a finite number of steady states of short duration, in which holdup is considered as constant mole. For each period of time the batch extractive distillation process is solved through the algorithm for continuous extractive distillation. Finally, the practical implementation of the shortcut model is discussed and data from the laboratory and literature are presented. It is found that this model has better adaptability, more satisfactory accuracy and less calculative load than previous rigorous model. Hence the algorithm for simulating BED is verified.